

Carbon Fiber Line Capacity

Historical Perspective

- 35 Year History in the Carbon Fiber Industry
- First System 1973 still in operation, 36" Wide (915mm)
- First system > 1m 1978 40" wide (1015mm) with 2 out of 3 systems still in operation today
- 1981 46" wide (1200mm wide)
- 1988 68" (1750mm wide)
- 1997-72" wide (1800mm wide)
- 1997 163" wide (4141mm wide)
- 2005 -120" wide (3000mm wide)
- 2008 (Today >12 systems @ 3000mm wide)

> 100 Units Carbon Fiber Projects to date

Year	Width (mm)	LT Length (mm)	HT Length (mm)	Line Speed* (m/min)	Capacity* (TPY)	Notes
1973	915	5488	2744	2.7	140	
1978	1016	8232	5488	5.5	320	
1981	1169	8232	7317	5.5	370	
1988	1677	10671	6504	6.5	630	
1988	3354	10671	6504	6.5	1260	Double Wide
1997	4141	13516	10239	8.3	2000	Double Wide
2005	3049	14278	10290	9.9	1750	
2008	3049	14278	14050	15.3	2700	

* Capacity and Line Speed have been calculated based on assumptions of:

- 24k Fiber on common Pitch Spacing
- Common LT Retention Ranges Times
- Common HT Retention Ranges Times

Single Line Capacity

Harper International Led Industry Trends

Single Line Capacity

Single Line Capacity

Carbon Fiber Systems Industry Trends – Economy of Scale

Production	mTPY	2000	4000
Сарех	USD	Х	<1.5X
Depreciated Cost	USD/kg	\$3.62	\$2.72
Power	kW/kg	36.5	30.3
<	kW/h	10125	16825
NG	Nm3/h	400	700
Орех	USD/kg	\$6.12	\$5.11
Cost of Production	USD/kg	\$9.74	\$7.82

Notes:

- Electricity assumed to be \$150 / MW
- Natural Gas assumed to be \$37.50 / MW and 12 kW / Nm3
- Straight Line Depreciation of Capital
- Estimate Exclusive of factors such as Nitrogen, CW, Maintenance, etcetera

Carbon Fiber Systems Industry Trends – Economy of Scale

Production	mTPY	2000	4000
Сарех	USD	Х	<1.5X
Depreciated Cost	USD/kg	\$3.62	\$2.72
Power	kW/kg	36.5	30.3
<	kW/h	10125	16825
NG	Nm3/h	400	700
Орех	USD/kg	\$6.12	\$5.11
Cost of Production	USD/kg	\$9.74	\$7.82

10% - 20% Savings in Cost of Production Through Reduced CAPEX and OPEX

larper

Carbon Fiber Systems

Cost Modeling

Manufactured By / Supplied Through Harper

Carbon Fiber Systems Cost Versus Capacity

Extension of data set through (<>10) multiple data points

Can a more accurate cost model help guide decisions about **the format of 'future' / next generation line capacities?**

What will serve as the basis for the cost model? Involves making assumptions about cost drivers for each unit operation

Detailed Modeling of Cost and Utility Consumption of each Unit Operation:

- Oxidation Ovens
- LT Furnace
- HT Furnace
- Surface Treatment
- Winders

Power Factor Modeling of:

- Thermal Oxidizer
- Creel
- Driers
- Infrastructure

Also has involved estimation of:

- Developmental & Project Engineering
- Cost of Production of Nitrogen
- Infrastructure
- Manpower (large area for variability)

Exclusions:

- Maintenance Costs
- Cooling Water Consumption
- Peripheral Material Handling
- Others...

- Nitrogen Consumption F(x) = width, capacity (mtpy)
- Oxidation Oven Exhaust F(x) = width, length, height
- Oxidation Oven Power F(x) = width, length, height, capacity
- LT Power F(x) = width, length, height, capacity
- HT Power F(x) = width, length, height, capacity
- Thermal Oxidizer F(x) = Exhaust Flows, Nitrogen Consumption
- Energy Recovery F(x) = Exhaust Flows, Recovered Air Temp
- Drier Power F(x) = line width, capacity
- Surface Treatment F(x) = line width, capacity (velocity)
- Most equations well fit (linear fit with R > 0.98)
- Based on Multiple Data Point

Oxidation Retention Time: LT Retention Time: HT Retention Time: Surface Treatment: Washing & Drying: Sizing & Drier: Winders: Thermal Oxidation:

60 Minutes – 120 Minutes 60 Seconds – 120 Seconds 60 Seconds – 120 Seconds Oxygen Content Drier Type Drier Type Largest Tow, Package Size Ox Ovens, LT Gases, HT Gases Energy Recovery RTO, Incineration, Direct Discharge NOX Levels, HCN, NH3

Model Inputs:

- Capacity, Tow Size, Tow Spacing
- Unit Operations Present
- Retention Times
- Winder Positions
- Energy Recovery, Recovery Temp.,
- Nominal Energy Consumption (%),
- Hours per year operating (up-time),
- Cost of Electricity, Natural Gas,
- Cost of Labor, Cost of PAN

- Years depreciation (equipment, infrastructure),
- Cost of Nitrogen,
- Creel Size, Package Size,
- Carbon Recovery,
- Equipment Dimensions,
- Type and Quantity of Process Off Gas Technologies
- etcetera...

Model Inputs:

- Capacity, Tow Size (12k), Dtex, Tow Spacing (6mm)
- Unit Operations Present (Creels to Winders + Tensioning)
- Retention Times (90 Minute Oxidation, 90 Sec LT, 90 Seconds HT)
- Winder Positions, Heat Recovery (Yes 75% Efficient),
- Recovery Temp (350C),
- Nominal Energy Consumption (75%),
- hours per year operating (up-time) (7000 hours per year),
- Cost of Electricity (\$0.05/kWhr), Natural Gas (\$0.10 / kWhr equiv.),
- Cost of Labor (\$100,000 Per Employee),
- Cost of PAN (\$6.00 /kg)

- Years depreciation (equipment, infrastructure) (7 yrs, 20 yrs), Infrastructure Factor (2.5x capital equipment investment)
- Cost of Nitrogen (\$0.025/m3 plus cost of electricity),
- Creel Size (300 kg), Package Size (10 kg),
- Carbon Recovery (50%),
- Equipment Dimensions (User Input),
- Type and Quantity of Process Off Gas Technologies (Thermal Oxidation with Heat Recovery)
- Maintenance Costs (assumed 2% 3% per year)
- Cooling Water Consumption (Cost assumed to be zero)
- etcetera...

CF Systems

Development of 'Future' Line Configurations

Carbon Fiber Business Model & Cost Analysis

Costs as a Function of Fiber Type, Spacing (Packing Density)

 Production Costs as a Function of Capacity, Width

Return on Investment Analysis for Auxiliary Unit Operations (Effluent Treatment)

Operating Cost Optimization

Helping Clients with Carbon Fiber Business Model & Cost Analysis

Production Rate vs Velocity

Not a true velocity field. Velocity limits are extended with line width and incremental equipment advances.

Carbon Fiber Business Model & Cost Analysis

Specific Cost - Cummulative

Cost Dynamics as a Function of Scale-Up

Carbon Fiber Cost Model Analysis

Production Costs as a Function of Capacity, Width

Evaluation of Capacity Options

1750mm Width –vs- 3000mm Width Overview and Cost Model Summary

Cost Model Output Assumptions / Inputs

Capacity carbon fiber at HT exit (mton/yr):	1.75m Wide	1.75m Wide	1.75m Wide	3m Wide
	500tpy	750tpy	1000tpy	1500tpy
Availability (hours/year):	7000	7000	7000	7000
1000's of filaments per tow (K):	12	12	12	12
Tow spacing (mm):	6.0	6.0	6.0	6.0
Number of tows	284	284	284	475
Linear Density (gr / m tow)	1.66	1.66	1.66	1.66
Line speed (m/min)	5.1	7.6	10.1	9.1
Target Oxidation residence time (min)	90	90	90	90
Target LT residence time (sec)	90	90	90	90
Target HT residence time (sec)	90	90	90	90
Oxidation oven feed rate (kg/hr)	142.8	214.3	285.7	428.5
Oxidation exit mass rate (kg/hr)	135.7	203.5	271.4	407.1
LT exit mass rate (kg/hr)	84.1	126.2	168.3	252.4
Carbon fiber HT exit mass rate (kg/hr)	71.4	107.1	142.9	214.3
Number of Ovens	3	3	3	3
Estimated tow-band width (mm):	1704	1704	1704	2850
Number of Control Zones in Oven Set	6	6	6	6
Design - Total Heated Length - (m):	485	687	900	840
Actual Oven Residence (@ system speed) (min):	96	90	89	93
LT Heated length (m)	8.0	12.0	14.6	14.3
LT Number of Control Zones	6	9	11	7
Actual LT Residence (@ system speed) (sec):	94	94	87	94
HT Heated length (m)	8.0	12.0	14.6	13.7
HT Number of Control Zones	6	9	11	8
Actual HT Residence (@ system speed) (sec):	94	94	87	91

Cost Model Output Utilities List

	1.75m Wide	1.75m Wide	1.75m Wide	3m Wide
Power	500tpy	750tpy	1000tpy	1500tpy
CF Production (kg/hr)	71.4	107.1	142.9	214.3
Total Installed Power (Line Load)	7545	9237	10661	14683
kw/kg (based on Installed)	105.6	86.2	74.6	68.5
Nominal Consumption Efficency	75.0%	75.0%	75.0%	75.0%
Nominal Consumption (kW) with Recuperation	4333	5077	5584	7250
kW/kg (Nominal) with Recuperation	60.7	47.4	39.1	33.8
Heat Recovery Present (1/0 = ves/no)	1	1	1	1
Heat Recuperation Possible (kW)	1768	2467	3216	5016
kw/kg (Max Installed) with Recuperation	80.9	63.2	52.1	45.1
Creels (kW)	30	30	30	50
Pretreatment (kW)	1	2	2	5
Oxidation Ovens (kW)	3841	4293	4644	5255
LT Furnace (kW)	400	567	674	1051
HT Furnace (kW)	947	1303	1540	2337
Surface Treatment - Elect., Wash, Dry (kW)	255	331	400	738
Surface Treatment - Sizing & Drying (kW)	266	346	417	771
Thermal Oxidizer 1 (kW)	1546	2105	2695	4090
Thermal Oxidizer 2 (kW)	0	0	0	0
Winding (kW)	74	74	74	124
Tensioners (Assumed) (kW)	185	185	185	263
Total (kW) with Recuperation	5777	6769	7445	9667

Cost Model Output OPEX Estimates

	1.75m Wide	1.75m Wide	1.75m Wide	3m Wide
Operating Cost (OPEX)	500tpy	750tpy	1000tpy	1500tpy
CF Production (kg/hr)	71.4	107.1	142.9	214.3
Operating Hours Per Year	7,000	7,000	7,000	7,000
Heat Recovery Present? (1/0 = Yes/No)	1	1	1	1
Nominal Consumption Efficency	75.0%	75.0%	75.0%	75.0%
Nominal Consumption (kW) with Recuperation	4332.6	5077.0	5584.0	7250.5
kW/kg (Nominal) with Recuperation	60.7	47.4	39.1	33.8
As Electricity (kW)	3428.3	3814.8	3939.1	4684.8
As Natural Gas (kW)	904.3	1,262.2	1,644.9	2,565.7
Electrical Cost (USD/kW)	\$0.05	\$0.05	\$0.05	\$0.05
Natural Gas Cost (USD/kW)	\$0.10	\$0.10	\$0.10	\$0.10
Nitrogen Consumption (Nm3/hr)	841.5	1,031.3	1,190.3	1,909.5
Nitrogen Cost (USD/hr)	\$33.03	\$40.47	\$46.71	\$74.94
Orevetere	27.0	40.0	40.0	50.0
Operators	\$7.0 \$100.000	40.0 ¢100.000	42.0 ¢100.000	59.0 ¢100.000
Cost Per Operator (USD/year)	\$100,000	\$100,000	\$100,000	\$100,000
Ninutes Der Creek (Minutes)	\$3,700,000	\$4,000,000	\$4,200,000	\$5,900,000
Minutes Per Creel (Minutes)	8.4	5.6	4.2	2.8
Minutes Per Package (Product)	126.0	84.0	63.0	42.0
Kilograms Per Vear	500.000	750.000	1 000 000	1 500 000
Cost Electricity (USD/year)	\$1 199 898	\$1 335 188	\$1,000,000	\$1,639,676
Cost Natural Gas (USD/year)	\$633.014	\$883 507	\$1 151 451	\$1 795 986
Cost Nitrogen (USD/year)	\$289,307	\$354 543	\$409 207	\$656 485
Cost Operators (USD/year)	\$3,700,000	\$4,000,000	\$4 200 000	\$5,900,000
Total Cost (USD/year)	\$6,322,219	\$7,323,238	\$8 139 348	\$11 492 148
	φ0,022,210	Ψ1,020,200	φ0,100,040	φ11,402,140
Cost Electricity (USD/kg)	\$2.40	\$1.78	\$1.38	\$1.09
Cost Natural Gas (USD/kg)	\$1.27	\$1.18	\$1.15	\$1.20
Cost Nitrogen (USD/kg)	\$0.58	\$0.47	\$0.41	\$0.44
Cost Operators (USD/kg)	\$7.40	\$5.33	\$4.20	\$3.93
Total Cost (USD/kg)	\$12.64	\$9.76	\$8.14	\$7.66

Cost Model Output Total Cost

	1.75m Wide	1.75m Wide	1.75m Wide	3m Wide
Total Cost Model	500tpy	750tpy	1000tpy	1500tpy
Cost PAN (USD/kg PAN)	\$3.00	\$3.00	\$3.00	\$3.00
Cost Pan / kg CF (USD / kg CF)	\$6.00	\$6.00	\$6.00	\$6.00
Cost PAN (USD/yr)	\$2,999,634	\$4,499,451	\$5,999,268	\$8,998,902
Cost CAPEX (USD) / Per Line	\$24,379,000	\$27,725,000	\$30,528,000	\$44,871,000
Systems Required for Desired Total Capacity	1	1	1	1
Infrastructure (fx CAPEX)	2.5	2.5	2.5	2.5
Infrastructure (USD)	\$60,947,500	\$69,312,500	\$76,320,000	\$112,177,500
Building Dimensions Length (m) - Estimated	180	230	270	300
Building Dimensions Width (m) - Estimated	30	30	30	40
Building Dimensions Foot Print (m2) - Estimated	5,400	6,900	8,100	12,000
	\$24,379,000	\$27,725,000	\$30,528,000	\$44,871,000
	\$60,947,500	\$69,312,500	\$76,320,000	\$112,177,500
Cost PAN (USD/kg CF)	\$6.00	\$6.00	\$6.00	\$6.00
Cost CAPEX (USD/kg CF)	\$5.57	\$4.22	\$3.48	\$3.41
Cost Infrastructure (USD/kg CF)	\$4.87	\$3.69	\$3.05	\$2.99
Cost OPEX (USD/kg CF)	\$12.64	\$9.76	\$8.14	\$7.66
Total Cost (USD/kg CF)	\$29.08	\$23.68	\$20.67	\$20.06

	1.75m Wide	1.75m Wide	1.75m Wide	3m Wide
CUMMULATIVE Total Cost Model	500tpy	750tpy	1000tpy	1500tpy
Total Cost (USD / kg CF)	\$29.08	\$23.68	\$20.67	\$20.06
Cost PAN (USD/kg CF)	\$6.00	\$6.00	\$6.00	\$6.00
Cost CAPEX (USD/kg CF)	\$11.57	\$10.22	\$9.48	\$9.41
Cost Infrastructure (USD/kg CF)	\$16.44	\$13.91	\$12.53	\$12.40
Cost OPEX (USD/kg CF)	\$29.08	\$23.68	\$20.67	\$20.06
Cost PAN (%)	20.6%	25.3%	29.0%	29.9%
Cost CAPEX (%)	39.8%	43.2%	45.9%	46.9%
Cost Infrastructure (%)	56.5%	58.8%	60.6%	61.8%
Cost OPEX (%)	100.0%	100.0%	100.0%	100.0%

Cost Model Output Total Cost

larper

Benefit of jumping to a 3000mm wide system depends on the max capacity reached at 1750mm wide system config.

\$4.00 / kg * 1,500,000 kg/yr = \$6MM USD/yr

Cost Model Output OPEX Estimates – Variable Energy Costs

Operating Cost Variability

Variance of OPEX as a function of Electrical and Natural Gas Costs for a 3m Wide 1500TYP facility (with natural gas = 2x electrical)

Cost Model Output OPEX Estimates – Effects of Heat Recovery

	1.75m Wide	1.75m Wide	1.75m Wide	3m Wide
	500tpy w/o HT	750tpy w/o HT	1000tpy w/o HT	1500tpy w/0 HT
Total Cost Model	Recovery	Recovery	Recovery	Recovery
Cost PAN (USD/kg PAN)	\$3.00	\$3.00	\$3.00	\$3.00
Cost Pan / kg CF (USD / kg CF)	\$6.00	\$6.00	\$6.00	\$6.00
Cost PAN (USD/yr)	\$2,999,634	\$4,499,451	\$5,999,268	\$8,998,902
Cost CAPEX (USD) / Per Line	\$23,024,000	\$26,040,000	\$28,527,000	\$42,127,000
Systems Required for Desired Total Capacit	1	1	1	1
Infrastructure (fx CAPEX)	2.5	2.5	2.5	2.5
Infrastructure (USD)	\$57,560,000	\$65,100,000	\$71,317,500	\$105,317,500
	\$23,024,000 \$57,560,000	\$26,040,000 \$65,100,000	\$28,527,000 \$71,317,500	\$42,127,000 \$105 317 500
	\$57,500,000	\$03,100,000	\$71,317,300	\$105,517,500
Cost PAN (USD/kg CF)	\$6.00	\$6.00	\$6.00	\$6.00
Cost CAPEX (USD/kg CF)	\$5.26	\$3.96	\$3.26	\$3.21
Cost Infrastructure (USD/kg CF)	\$4.60	\$3.47	\$2.85	\$2.81
Cost OPEX (USD/kg CF)	\$13.57	\$10.63	\$8.98	\$8.54
Total Cost (USD/kg CF)	\$29.43	\$24.06	\$21.09	\$20.55

	1.75m Wide	1.75m Wide	1.75m Wide	3m Wide
	500tpy	750tpy	1000tpy	1500tpy
	\$3.00	\$3.00	\$3.00	\$3.00
	\$6.00	\$6.00	\$6.00	\$6.00
	\$2,999,634	\$4,499,451	\$5,999,268	\$8,998,902
	\$24,379,000	\$27,725,000	\$30,528,000	\$44,871,000
	1	1	1	1
	2.5	2.5	2.5	2.5
	\$60,947,500	\$69,312,500	\$76,320,000	\$112,177,500
	\$24,379,000	\$27,725,000	\$30,528,000	\$44,871,000
	\$60,947,500	\$69,312,500	\$76,320,000	\$112,177,500
	\$6.00	\$6.00	\$6.00	\$6.00
	\$5.57	\$4.22	\$3.48	\$3.41
	\$4.87	\$3.69	\$3.05	\$2.99
	\$12.64	\$9.76	\$8.14	\$7.66
	\$29.08	\$23.68	\$20.67	\$20.06
Annual Savings Per Year	\$174,037	\$287,040	\$415,833	\$729,308
Return On Investment	7.3	5.5	4.5	3.4

3000 TPY Capacity Options

Overview and Cost Model Summary

Future Line Capacity Evaluation

- Current Capacities: 1500 tpy to >2000+ tpy
- Next Generation Line Capacities >3000 tpy (following the tendency for doubling of capacities)
- Evaluated Scenarios for Next Generation Line Design
 - Faster Lines, Existing Widths
 - Novel Configurations (Multiple, Stacked Tow Bands)
 - Wider Lines, Existing Speeds

Cost Differentials Must be Evaluated Against Developmental Risks

Block Diagram 1500 TPY – 3000mm Wide

Marper

Block Diagram 3000 TPY – 3000mm Wide – Faster Line

larper

Block Diagram 3000 TPY – 3000mm Wide – 2 Tow Bands (Stacked)

arper

37

Block Diagram 30000 TPY – 6000mm Wide

System Design is Similar to 1500 TPY Plant, but Equipment is wider

Cost Model Output Assumptions / Inputs

Capacity carbon fiber at HT exit (mton/yr):	3m Wide	3m Wide x 2 Lines	3m Wide - Faster	3m Wide x 2 Tow	6m Wide
	1500 TPY	3000tpy w / 2X	3000tpy	3000tpy	3000tpy
Availability (hours/year):	7000	7000	7000	7000	7000
1000's of filaments per tow (K):	12	12	12	12	12
Tow spacing (mm):	6.0	6.0	6.0	6.0	6.0
Number of tows	475	475	475	475	950
Linear Density (gr / m tow)	1.66	1.66	1.66	1.66	1.66
Line speed (m/min)	9.1	18.2	18.2	9.1	9.1
Target Oxidation residence time (min)	90	90	90	180	90
Target LT residence time (sec)	90	90	90	90	90
Target HT residence time (sec)	90	90	90	90	90
Oxidation oven feed rate (kg/hr)	428.5	857.0	857.0	857.0	857.0
Oxidation exit mass rate (kg/hr)	407.1	814.2	814.2	814.2	814.2
LT exit mass rate (kg/hr)	252.4	504.8	504.8	504.8	504.8
Carbon fiber HT exit mass rate (kg/hr)	214.3	428.6	428.6	428.6	428.6
Number of Ovens	3	3	6	6	3
Estimated tow-band width (mm):	2850	2850	2850	2850	5700
Number of Control Zones in Oven Set	6	6	12	12	6
Design - Total Heated Length - (m):	840	840	1681	1681	840
Actual Oven Residence (@ system speed) (min):	93	46	93	185	93
LT Heated length (m)	14.3	14.3	28.6	14.3	14.3
LT Number of Control Zones	7	7	14	7	7
Actual LT Residence (@ system speed) (sec):	94	47	94	94	94
HT Heated length (m)	13.7	13.7	27.5	13.7	13.7
HT Number of Control Zones	8	8	16	8	8
Actual HT Residence (@ system speed) (sec):	91	45	91	91	91

Cost Model Output Scale Up (3000 TPY) Scenarios - Utilities List

	3m Wide	3m Wide	3m Wide - Faster	3m Wide x 2 Tow	6m Wide
Power	1500 TPY	3000tpy w / 2X	3000tpy	3000tpy	3000tpy
CF Production (kg/hr)	214.3	428.6	428.6	428.6	428.6
Tratel Installed Demon (Line Load)	44692	00200	07540	04590	0.4002
l otal installed Power (Line Load)	14663	29300	2/540	24562	24903
kw/kg (based on installed)	68.5	68.5	64.3	57.4	58.1
Nominal Consumption Efficency	75.0%	75.0%	75.0%	75.0%	75.0%
Nominal Consumption (kW) with Recuperation	7250	14501	13263	11045	11133
kW/kg (Nominal) with Recuperation	33.8	33.8	30.9	25.8	26.0
Heat Recovery Present (1/0 = ves/no)	1	1	1	1	1
Heat Recuperation Possible (kW)	5016	10032	9856	9856	10059
near Necuperation i ossible (km)	0010	10002	0000	0000	10000
kw/kg (Installed Net) with Recuperation	45.1	45.1	41.3	34.4	34.6
Creels (kW)	50	99	50	50	99
Pretreatment (kW)	5	9	7	7	14
Oxidation Ovens (kW)	5255	10510	10510	10510	6155
LT Furnace (kW)	1051	2102	1908	1051	1908
HT Furnace (kW)	2337	4674	4437	2337	4437
Surface Treatment - Elect., Wash, Dry (kW)	738	1477	1159	1159	1818
Surface Treatment - Sizing & Drying (kW)	771	1542	1210	1210	1899
Thermal Oxidizer 1 (kW)	4090	8181	7761	7761	7913
Thermal Oxidizer 2 (kW)	0	0	0	0	0
Winding (kW)	124	248	124	124	248
Tensioners (Assumed) (kW)	263	525	375	375	412
Total (kW) with Recuperation	9667	19335	17684	14726	14844

Cost Model Output Scale Up (3000 TPY) Scenarios OPEX Est.

	3m Wide	3m Wide	3m Wide - Faster	3m Wide x 2 Tow	6m Wide
Operating Cost (OPEX)	1500 TPY	3000tpy w / 2X	3000tpy	3000tpy	3000tpy
CF Production (kg/hr)	214.3	428.6	428.6	428.6	428.6
Operating Hours Per Year	7,000	7,000	7,000	7,000	7,000
Heat Recovery Present? (1/0 = Yes/No)	1	1	1	1	1
Nominal Consumption Efficency	75.0%	75.0%	75.0%	75.0%	75.0%
Nominal Consumption (kW) with Recuperation	7250.5	14501.0	13263.1	11044.8	11133.0
kW/kg (Nominal) with Recuperation	33.8	33.8	30.9	25.8	26.0
As Electricity (kW)	4684.8	9369.6	8221.4	6003.1	5987.8
As Natural Gas (kW)	2,565.7	5131.4	5,041.7	5,041.7	5,145.2
Electrical Cost (USD/kW)	\$0.05	\$0.05	\$0.05	\$0.05	\$0.05
Natural Gas Cost (USD/kW)	\$0.10	\$0.10	\$0.10	\$0.10	\$0.10
Nites non Consumption (Ner2/kg)	1 000 5	2010.0	0 700 0	0 700 0	2 0 1 0 2
Nitrogen Consumption (Nm3/nr)	1,909.0	3819.U ¢140.00	Z,700.0 ¢105.07	2,700.0 ¢105.07	3,818.3 10,05
Nitrogen Cost (USD/nr)	\$74.94	\$149.88	\$105.97	\$105.97	\$149.80
Operators	59.0	118.0	66.0	101.0	101.0
Cost Per Operator (USD/year)	\$100.000	\$100.000	\$100.000	\$100.000	\$100.000
Total Operator Cost Per Year (USD/year)	\$5,900,000	\$11.800.000	\$6,600,000	\$10,100,000	\$10,100,000
Minutes Per Creel (Minutes)	2.8	1.4	1.4	1.4	1.4
Minutes Per Package (Product)	42.0	21.0	21.0	21.0	21.0
• • • •					
Kilograms Per Year	1,500,000	3,000,000	3,000,000	3,000,000	3,000,000
Cost Electricity (USD/year)	\$1,639,676	\$3,279,353	\$2,877,487	\$2,101,088	\$2,095,726
Cost Natural Gas (USD/year)	\$1,795,986	\$3,591,972	\$3,529,167	\$3,529,167	\$3,601,646
Cost Nitrogen (USD/year)	\$656,485	\$1,312,970	\$928,259	\$928,259	\$1,312,712
Cost Operators (USD/year)	\$5,900,000	\$11,800,000	\$6,600,000	\$10,100,000	\$10,100,000
Total Cost (USD/year)	\$11,492,148	\$22,984,295	\$16,934,912	\$19,658,513	\$20,110,084
Cost Electricity (USD/kg)	\$1.09	\$1.09	\$0.96	\$0.70	\$0.70
Cost Natural Gas (USD/kg)	\$1.20	\$1.20	\$1.18	\$1.18	\$1.20
Cost Nitrogen (USD/kg)	\$0.44	\$0.44	\$0.31	\$0.31	\$0.44
Cost Operators (USD/kg)	\$3.93	\$3.93	\$2.20	\$3.37	\$3.37
Total Cost (USD/kg)	\$7.66	\$7.66	\$5.64	\$6.55	\$6.70

Cost Model Output Scale Up (3000 TPY) Scenarios Total Cost

	3m Wide	3m Wide	3m Wide - Faster	3m Wide x 2 Tow	6m Wide
Total Cost Model	1500 TPY	3000tpy w / 2X	3000tpy	3000tpy	3000tpy
Cost PAN (USD/kg PAN)	\$3.00	\$3.00	\$3.00	\$3.00	\$3.00
Cost Pan / kg CF (USD / kg CF)	\$6.00	\$6.00	\$6.00	\$6.00	\$6.00
Cost PAN (USD/yr)	\$8,998,902	\$17,997,804	\$17,997,804	\$17,997,804	\$17,997,804
Cost CAPEX (USD) / Per Line	\$44,871,000	\$89,742,000	\$61,296,000	\$79,343,000	\$81,925,000
CAPEX Cost Factor (Over 1500 tpy line)		2.00	1.37	1.77	1.83
Systems Required for Desired Total Capacity	2	1	1	1	1
Infrastructure (fx CAPEX)	2.5	2.5	2.5	2.5	2.5
Infrastructure (USD)	\$112,177,500	\$224,355,000	\$153,240,000	\$198,357,500	\$204,812,500
Building Dimensions Length (m) - Estimated	300	300	500	360	380
Building Dimensions Width (m) - Estimated	40	80	40	40	70
Building Dimensions Foot Print (m2) - Estimated	12,000	24,000	20,000	14,400	26,600
Cost PAN (USD/kg CF)	\$6.00	\$6.00	\$6.00	\$6.00	\$6.00
Cost CAPEX (USD/kg CF)	\$3.41	\$3.41	\$2.33	\$3.02	\$3.12
Cost Infrastructure (USD/kg CF)	\$2.99	\$2.99	\$2.04	\$2.64	\$2.73
Cost OPEX (USD/kg CF)	\$7.66	\$7.66	\$5.64	\$6.55	\$6.70
Total Cost (USD/kg CF)	\$20.06	\$20.06	\$16.02	\$18.21	\$18.55

CUMMULATIVE Total Cost Model					
Total Cost (USD / kg CF)	\$20.06	\$20.06	\$16.02	\$18.21	\$18.55
Cost PAN (USD/kg CF)	\$6.00	\$6.00	\$6.00	\$6.00	\$6.00
Cost CAPEX (USD/kg CF)	\$9.41	\$9.41	\$8.33	\$9.02	\$9.12
Cost Infrastructure (USD/kg CF)	\$12.40	\$12.40	\$10.37	\$11.66	\$11.84
Cost OPEX (USD/kg CF)	\$20.06	\$20.06	\$16.02	\$18.21	\$18.55
Cost PAN (%)	29.9%	29.9%	37.5%	32.9%	32.3%
Cost CAPEX (%)	46.9%	46.9%	52.0%	49.5%	49.2%
Cost Infrastructure (%)	61.8%	61.8%	64.8%	64.0%	63.9%
Cost OPEX (%)	100.0%	100.0%	100.0%	100.0%	100.0%

Future Line Capacity Evaluation

For Next Generation, Cost differential has been estimated via Cost Modeling:

		Capex	lotal
•	Multiple of Current State of the Art Line	(2.00x)	100%
•	Faster Lines, Existing Widths	(1.37x)	79.8%
•	Novel Configurations (Multiple Tow Bands)	(1.77x)	90.8%
	Wider Lines, Existing Speeds	(1.83x)	92.4%

Wider Lines and Stacking offer reduction of Consumed Energy, but large Benefits through Faster Velocities

Future Line Capacity Evaluation

Developmental Engineering should be directed toward:

- Evaluation of roller diameters loading, deflection & effect on oven volume
- Evaluation of heat dispersion from rolls and transport systems
- System Logistics & operator ergonomics
- Structural limits for materials (LT Muffle & HT Muffle)
- Development of technology to manage cantenary (current limit on most equipment is ~15m heated length)
- Improved Heat Recovery
- Improved Process Gas Segregation

Projected Cost Differentials can be used to drive R&D Efforts

