Designing for Energy Efficiency in Thermal Processing

Webinar 1 in Harper’s Series on Maximizing Production Economics
Welcome!

Meet your Presenters:

- Robert Blackmon, VP of Integrated Systems
 Chemical Engineering, Northwestern University
 Leads Carbon Fiber Systems Division

- Doug Armstrong, Process Technology Engineer
 Mechanical Engineering, University at Buffalo
 Senior Engineer for Integrated Projects

Designing for Energy Efficiency in Thermal Processing
Agenda

- About this Webinar Series
- Introduction to Harper
- Keys to an Energy Efficient Design
 - Moving from batch to continuous
 - Considerations in furnace selection
 - Mitigating risk in scale up
 - Practical solutions for existing systems
- Case Study Example
- Wrap-Up / Question & Answer
About This Webinar Series

Maximizing the Production Economics of Your Thermal Processing System

- Your inside access to Harper's deep technical expertise
- Recording of the event will be available on demand for 60 days after the event
- Future Events in this Series
 - Planning for Success: Sensibly Scaling Up Production – August 2012
 - Thermal Processing Research: Designing Flexibility & Performance – October 2012
 - Maintenance Optimization – Planning Downtime Efficiently – December 2012
Introduction to Harper

- Headquartered outside of Buffalo, NY
- Decades of thermal processing experience
- Dedicated Technology Centers for customer process development & testing
- Multi-disciplined engineering talent
 - Chemical
 - Ceramic
 - Mechanical
 - Electrical
 - Industrial
 - Process & Integration
Introduction to Harper

We work with developers & producers of advanced materials to provide innovative technologies:

– 200°C – 3000°C
– Batch to continuous processing
– Precise atmospheric controls
– High purity requirements
– High temperature GSL reactions

- Refinement
- Scale Up
- Optimization
Introduction to Harper

Focus on Processing System Solutions for…

Advanced Materials:
- Fibers & Filaments
- Metal Oxides & Powders
- Technical Ceramics
- Energy Materials
- Nano Materials
- Rare Earths
- Graphene

Processes:
- Sintering
- Drying
- Calcination
- Reduction
- Oxidation
- Carbonization
- Carburization
- Solid-solid reaction
- Gas-solid reaction
- Purification
- Metalizing
- Debinding
- Parts processing
- Phase transformation
Introduction to Harper

Whether in refinement, scale up or optimization…
…we solve challenges that no one else can.

Helping customers turn the next generation of material innovations into profitable new markets.
Keys to Energy Efficient Design
Deeply considering energy efficiency when scaling advanced materials processing can directly impact commercial viability…
Deeply considering energy efficiency when scaling advanced materials processing can directly impact commercial viability…
Deeply considering energy efficiency when scaling advanced materials processing can directly impact commercial viability…

…and must start at the Pilot Phase of scaling.

- **Unit Cost**\(^*\) of an Advanced Material
- **Energy Cost**\(^*\) per Unit of an Advanced Material

Stair step due to shift from batch to continuous processing.

Fully burdened cost
Deeply considering energy efficiency when scaling advanced materials processing can directly impact commercial viability…

…and must start at the Pilot Phase of scaling.

Unit Cost of an Advanced Material

Energy Cost per Unit of an Advanced Material

Log Scale

Lab Scale | Pilot Scale | Production Scale

Stair step due to shift from batch to continuous processing.

Typical 25-30% Slope

Energy cost can equal 1/5 or more of total unit cost

Fully burdened cost
Keys to Energy Efficient Design

The largest gain in efficiency comes from transitioning from Batch to Continuous – WHY?
The largest gain in efficiency comes from transitioning from Batch to Continuous – WHY?

Three key design aspects to consider:
- Refractory design & heat cycling
- Process gas management
- Effluent / Off gas processing
Energy Efficiency – Refractory Design
Energy Efficiency – Refractory Design

Batch

- Balance thermal containment vs. heating / cooling rates
Energy Efficiency – Refractory Design

Batch

- Balance thermal containment vs. heating / cooling rates
 - More efficient designs provide energy savings, but extended cycle time
Energy Efficiency – Refractory Design

Batch

- Balance thermal containment vs. heating / cooling rates
 - More efficient designs provide energy savings, but extended cycle time
 - Lesser designs may improve cycle time, but detract from efficiency. (shell temperature, uniformity)
Energy Efficiency – Refractory Design

Batch

• Balance thermal containment vs. heating / cooling rates

 + More efficient designs provide energy savings, but extended cycle time

 - Lesser designs may improve cycle time, but detract from efficiency.
 (shell temperature, uniformity)

 …cycle times = production rate
Energy Efficiency – Refractory Design

Batch

- Balance thermal containment vs. heating / cooling rates
 - More efficient designs provide energy savings, but extended cycle time
 - Lesser designs may improve cycle time, but detract from efficiency. (shell temperature, uniformity)

 ...cycle times = production rate

- Additional input power and cooling equipment may optimize cycle time, but energy efficiency is abandoned
Energy Efficiency – Refractory Design

Batch

- Balance thermal containment vs. heating / cooling rates
 - More efficient designs provide energy savings, but extended cycle time
 - Lesser designs may improve cycle time, but detract from efficiency.
 - Shell temperature, uniformity
 - Cycle times = production rate
- Additional input power and cooling equipment may optimize cycle time, but energy efficiency is abandoned

Continuous

- Heating, soak, and cooling processes are decoupled
Energy Efficiency – Refractory Design

Batch
- Balance thermal containment vs. heating / cooling rates
 - More efficient designs provide energy savings, but extended cycle time
 - Lesser designs may improve cycle time, but detract from efficiency. (shell temperature, uniformity)
 - …cycle times = production rate
- Additional input power and cooling equipment may optimize cycle time, but energy efficiency is abandoned

Continuous
- Heating, soak, and cooling processes are decoupled
- Refractory designs optimized for thermal management & efficiency (time-temp profile)
Energy Efficiency – Refractory Design

Batch
- Balance thermal containment vs. heating / cooling rates
 - More efficient designs provide energy savings, but extended cycle time
 - Lesser designs may improve cycle time, but detract from efficiency. (shell temperature, uniformity)
 - ...cycle times = production rate
- Additional input power and cooling equipment may optimize cycle time, but energy efficiency is abandoned

Continuous
- Heating, soak, and cooling processes are decoupled
- Refractory designs optimized for thermal management & efficiency (time-temp profile)
- As the refractory is no longer thermally cycled, more sophisticated refractory may be used
Energy Efficiency – Refractory Design

Batch
- Balance thermal containment vs. heating / cooling rates
 - More efficient designs provide energy savings, but extended cycle time
 - Lesser designs may improve cycle time, but detract from efficiency. (shell temperature, uniformity)
 - ...cycle times = production rate
- Additional input power and cooling equipment may optimize cycle time, but energy efficiency is abandoned

Continuous
- Heating, soak, and cooling processes are decoupled
- Refractory designs optimized for thermal management & efficiency (time-temp profile)
- As the refractory is no longer thermally cycled, more sophisticated refractory may be used
- Design for specific purpose is possible (containment, cooling, directional uniformity)
Energy Efficiency – Refractory Design

Batch
- Balance thermal containment vs. heating / cooling rates
 + More efficient designs provide energy savings, but extended cycle time
 - Lesser designs may improve cycle time, but detract from efficiency. (shell temperature, uniformity)
 ...cycle times = production rate
- Additional input power and cooling equipment may optimize cycle time, but energy efficiency is abandoned

Continuous
- Heating, soak, and cooling processes are decoupled
- Refractory designs optimized for thermal management & efficiency (time-temp profile)
- As the refractory is no longer thermally cycled, more sophisticated refractory may be used
- Design for specific purpose is possible (containment, cooling, directional uniformity)
- Energy recovery possible
Energy Efficiency – Process Gas Mgmt

Batch

- Limited opportunity for waste heat utilization
Energy Efficiency – Process Gas Mgmt

Batch

- Limited opportunity for waste heat utilization
- Opportunity for preheat & recovery limited to discrete segments of time-temperature profile
Energy Efficiency – Process Gas Mgmt

Batch

- Limited opportunity for waste heat utilization
- Opportunity for preheat & recovery limited to discrete segments of time-temperature profile
- Efficient seals minimize leakage & enhance purity of the reaction chamber
Energy Efficiency – Process Gas Mgmt

Batch

- Limited opportunity for waste heat utilization
- Opportunity for preheat & recovery limited to discrete segments of time-temperature profile
- Efficient seals minimize leakage & enhance purity of the reaction chamber
- Recovery options are limited to:
Energy Efficiency – Process Gas Mgmt

Batch

• Limited opportunity for waste heat utilization
• Opportunity for preheat & recovery limited to discrete segments of time-temperature profile
• Efficient seals minimize leakage & enhance purity of the reaction chamber
• Recovery options are limited to:
 • Associations of multiple batch equipments, each at a different part of the processing profile, or
Energy Efficiency – Process Gas Mgmt

Batch

- Limited opportunity for waste heat utilization
- Opportunity for preheat & recovery limited to discrete segments of time-temperature profile
- Efficient seals minimize leakage & enhance purity of the reaction chamber
- Recovery options are limited to:
 - Associations of multiple batch equipments, each at a different part of the processing profile, or
 - Use of reject heat elsewhere in the plant
Energy Efficiency – Process Gas Mgmt

Batch
- Limited opportunity for waste heat utilization
- Opportunity for preheat & recovery limited to discrete segments of time-temperature profile
- Efficient seals minimize leakage & enhance purity of the reaction chamber
- Recovery options are limited to:
 - Associations of multiple batch equipments, each at a different part of the processing profile, or
 - Use of reject heat elsewhere in the plant

Continuous
- A variety of options for recovering energy:
Energy Efficiency – Process Gas Mgmt

Batch

- Limited opportunity for waste heat utilization
- Opportunity for preheat & recovery limited to discrete segments of time-temperature profile
- Efficient seals minimize leakage & enhance purity of the reaction chamber
- Recovery options are limited to:
 - Associations of multiple batch equipments, each at a different part of the processing profile, or
 - Use of reject heat elsewhere in the plant

Continuous

- A variety of options for recovering energy:
- Process gas flow “counter” to advanced material production (offsets cooling & preheating)
Energy Efficiency – Process Gas Mgmt

Batch

- Limited opportunity for waste heat utilization
- Opportunity for preheat & recovery limited to discrete segments of time-temperature profile
- Efficient seals minimize leakage & enhance purity of the reaction chamber
- Recovery options are limited to:
 - Associations of multiple batch equipments, each at a different part of the processing profile, or
 - Use of reject heat elsewhere in the plant

Continuous

- A variety of options for recovering energy:
 - Process gas flow “counter” to advanced material production (offsets cooling & preheating)
 - Reactants may be conserved
Energy Efficiency – Process Gas Mgmt

Batch

- Limited opportunity for waste heat utilization
- Opportunity for preheat & recovery limited to discrete segments of time-temperature profile
- Efficient seals minimize leakage & enhance purity of the reaction chamber
- Recovery options are limited to:
 - Associations of multiple batch equipments, each at a different part of the processing profile, or
 - Use of reject heat elsewhere in the plant

Continuous

- A variety of options for recovering energy:
 - Process gas flow “counter” to advanced material production (offsets cooling & preheating)
- Reactants may be conserved
- Some processes produce effluent, with a fuel value. Factors include:
Energy Efficiency – Process Gas Mgmt

Batch

- Limited opportunity for waste heat utilization
- Opportunity for preheat & recovery limited to discrete segments of time-temperature profile
- Efficient seals minimize leakage & enhance purity of the reaction chamber
- Recovery options are limited to:
 - Associations of multiple batch equipments, each at a different part of the processing profile, or
 - Use of reject heat elsewhere in the plant

Continuous

- A variety of options for recovering energy:
 - Process gas flow “counter” to advanced material production (offsets cooling & preheating)
 - Reactants may be conserved
 - Some processes produce effluent, with a fuel value. Factors include:
 - Hazardous air pollutants

Reactants may be conserved
- Some processes produce effluent, with a fuel value. Factors include:
 - Hazardous air pollutants
Energy Efficiency – Process Gas Mgmt

Batch

- Limited opportunity for waste heat utilization
- Opportunity for preheat & recovery limited to discrete segments of time-temperature profile
- Efficient seals minimize leakage & enhance purity of the reaction chamber
- Recovery options are limited to:
 - Associations of multiple batch equipments, each at a different part of the processing profile, or
 - Use of reject heat elsewhere in the plant

Continuous

- A variety of options for recovering energy:
 - Process gas flow “counter” to advanced material production (offsets cooling & preheating)
 - Reactants may be conserved
 - Some processes produce effluent, with a fuel value. Factors include:
 - Hazardous air pollutants
 - Presence of particulates
Energy Efficiency – Process Gas Mgmt

Batch
- Limited opportunity for waste heat utilization
- Opportunity for preheat & recovery limited to discrete segments of time-temperature profile
- Efficient seals minimize leakage & enhance purity of the reaction chamber
- Recovery options are limited to:
 - Associations of multiple batch equipments, each at a different part of the processing profile, or
 - Use of reject heat elsewhere in the plant

Continuous
- A variety of options for recovering energy:
 - Process gas flow “counter” to advanced material production (offsets cooling & preheating)
- Reactants may be conserved
- Some processes produce effluent, with a fuel value. Factors include:
 - Hazardous air pollutants
 - Presence of particulates
 - Energy content
Energy Efficiency – Off Gas Processing

Abatement vs. Clean and Recycle

Abatement
- Commonly viewed as a cost center
- Generally does not relate to or enhance production quality
- Exhaust is considered a byproduct requiring treatment and disposal
- High temperature thermal process that creates opportunity for energy reutilization, if needed

Clean and Recycle
- Involves investment of capital equipment to achieve recycle needs to be weighed against cost for producing the gas
Energy Efficiency – Off Gas Processing

Key Decisions in Abatement vs. Clean and Recycle
Energy Efficiency – Off Gas Processing

Key Decisions in Abatement vs. Clean and Recycle

- Not all processes have off gas that needs to be abated
Energy Efficiency – Off Gas Processing

Key Decisions in Abatement vs. Clean and Recycle

- Not all processes have off gas that needs to be abated
- Dangerous off gases almost always need to be abated
 limited opportunity for recycle
Energy Efficiency – Off Gas Processing

Key Decisions in Abatement vs. Clean and Recycle

- Not all processes have off gas that needs to be abated
- Dangerous off gases almost always need to be abated
 limited opportunity for recycle
- ROI must make sense. Larger scale, more continuous processing,
 and elevated temperatures yield an economic advantage.
Energy Efficiency – Off Gas Processing

Key Decisions in Abatement vs. Clean and Recycle

- Not all processes have off gas that needs to be abated
- Dangerous off gases almost always need to be abated
 limited opportunity for recycle
- ROI must make sense. Larger scale, more continuous processing,
 and elevated temperatures yield an economic advantage.
- Identify auxiliary process or utilities
 to use recovered energy
Selecting an Energy Efficient Reactor Process

Energy Cost per Unit of an Advanced Material

Batch Processing

Continuous Processing
Selecting an Energy Efficient Reactor Process

Energy Cost per Unit of an Advanced Material

- Elevator Furnace
- Box Furnace
- Autoclave

Batch Processing | Continuous Processing
Selecting an Energy Efficient Reactor Process

- Elevator Furnace
- Box Furnace
- Autoclave
- Rotary Tube
- Pusher/Roller Hearth
- Horizontal Slot
- Mesh/Strip Belt
- Vertical Tube/Slot

Energy Cost per Unit of an Advanced Material

Batch Processing
Continuous Processing
Selecting an Energy Efficient Reactor Process

Transitioning from batch to continuous processing create a step function reduction in energy cost.

- Rotary Tube
- Pusher/Roller Hearth
- Horizontal Slot
- Mesh/Strip Belt
- Vertical Tube/Slot

Energy Cost per Unit of an Advanced Material

- Elevator Furnace
- Box Furnace
- Autoclave

Batch Processing vs. Continuous Processing
Keys to an Energy Efficient Design – Furnace Selection

<table>
<thead>
<tr>
<th>Reactor Type</th>
<th>Typical Material Profile</th>
<th>Material Handling Transport</th>
<th>Volumetric Efficiency</th>
<th>Homogenity of Reaction</th>
<th>Typical Production Volume</th>
<th>Relative Energy Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotary Tube</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pusher / Roller Hearths</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesh / Strip Belt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical Tube / Slot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal Slot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Keys to an Energy Efficient Design – Furnace Selection

<table>
<thead>
<tr>
<th>Reactor Type</th>
<th>Typical Material Profile</th>
<th>Material Handling Transport</th>
<th>Volumetric Efficiency</th>
<th>Homogenity of Reaction</th>
<th>Typical Production Volume</th>
<th>Relative Energy Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotary Tube</td>
<td>Ideal for Powder and Bulk Materials</td>
<td>Via Rotating Tube and Angle of Inclination</td>
<td>Low (10% - 20% Filled)</td>
<td>Low</td>
<td>Moderate</td>
<td>High</td>
</tr>
<tr>
<td>Pusher / Roller Hearths</td>
<td>Used for Powders, Bulk Materials and Net Shapes</td>
<td>Via Transport in Saggers</td>
<td>Moderate</td>
<td>Highly Uniform</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Mesh / Strip Belt</td>
<td>Used for Powders, Bulk Materials and Net Shapes</td>
<td>Via Mechanical Belt</td>
<td>Moderate</td>
<td>Highly Uniform</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td>Vertical Tube / Slot</td>
<td>Ideal for Powders</td>
<td>Via Gravity or Set by Rotary Valve or Auger</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Horizontal Slot</td>
<td>Ideal for Fibers, Filaments and Webs</td>
<td>Material Generally Not in Contact with Furnace</td>
<td>Low</td>
<td>Moderate</td>
<td>High</td>
<td>High</td>
</tr>
</tbody>
</table>
Furnace Selection – Pusher/Roller

<table>
<thead>
<tr>
<th>Typical Material Profile</th>
<th>Material Handling Transport</th>
<th>Volumetric Efficiency</th>
<th>Homogeneity of Reaction</th>
<th>Typical Production Volume</th>
<th>Relative Energy Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Used for Powders, Bulk Materials and Net Shapes</td>
<td>Via Transport in Saggers</td>
<td>Moderate</td>
<td>Highly Uniform</td>
<td>High</td>
<td>Low</td>
</tr>
</tbody>
</table>

Energy Efficiency Considerations:

- Requires saggers to go through heating and cooling cycle
- Recovered heat from product carriers can be used to minimize impact on system efficiencies
- Material flows can be engineered so that exiting material is directly cooled by association with cool, incoming reactants, which are concurrently preheated
Furnace Selection - Rotary Tube

<table>
<thead>
<tr>
<th>Typical Material Profile</th>
<th>Material Handling Transport</th>
<th>Volumetric Efficiency</th>
<th>Homogenity of Reaction</th>
<th>Typical Production Volume</th>
<th>Relative Energy Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal for Powder and Bulk Materials</td>
<td>Via Rotating Tube and Angle of Inclination</td>
<td>Low (10% - 20% Filled)</td>
<td>Low</td>
<td>Moderate</td>
<td>High</td>
</tr>
</tbody>
</table>

Energy Efficiency Considerations:

- No need for containers; conveyance is energy efficient. Only reactant powder is heated and cooled, not the conveying system.

- Built in stirring action
 - Enhances thermal transfer to the bed
 - Improves removal of product gases
 - Increases solid/gas exchange in cases where the furnace gas is also a reactant

However, process heterogeneity increases (variance of time at temperature)
Energy use is primarily related to heating the product and reaction, and is thus relatively efficient. Opportunity for highest volumetric utilization.

Design allows for minimal interaction with the furnace wall, thereby providing improved options where contamination is an issue.

Furnace Selection – Vertical Tube / Slot

<table>
<thead>
<tr>
<th>Typical Material Profile</th>
<th>Material Handling Transport</th>
<th>Volumetric Efficiency</th>
<th>Homogenity of Reaction</th>
<th>Typical Production Volume</th>
<th>Relative Energy Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal for Powders</td>
<td>Via Gravity or Set by Rotary Valve or Auger</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
</tr>
</tbody>
</table>
Furnace Selection – Mesh / Strip Belt

<table>
<thead>
<tr>
<th>Typical Material Profile</th>
<th>Material Handling Transport</th>
<th>Volumetric Efficiency</th>
<th>Homogenity of Reaction</th>
<th>Typical Production Volume</th>
<th>Relative Energy Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Used for Powders, Bulk Materials and Net Shapes</td>
<td>Via Mechanical Belt</td>
<td>Moderate</td>
<td>Highly Uniform</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

Energy Efficiency Considerations:

- No container required but belt must be heated and cooled
- Choice in open weave or uniform plate – difference in heat load and gas interactions
- With open weave, more targeted gas solid interaction as gas can flow through the belt
- Scalable within limits
 - Long belt creates of stresses
 - Thermal lag influences time temperature curve for the process material
 - Lower maximum temperatures
Furnace Selection – Horizontal Slot

<table>
<thead>
<tr>
<th>Typical Material Profile</th>
<th>Material Handling Transport</th>
<th>Volumetric Efficiency</th>
<th>Homogeneity of Reaction</th>
<th>Typical Production Volume</th>
<th>Relative Energy Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal for Fibers, Filaments and Webs</td>
<td>Material Generally Not in Contact with Furnace</td>
<td>Low</td>
<td>Moderate</td>
<td>High</td>
<td>High</td>
</tr>
</tbody>
</table>

Energy Efficiency Considerations:

- Represents near ideal design for energy efficiency
 - Minimal or no interactions between reactor and flow of material
 - Low to moderate volumetric utilization of the reactor – lots of empty space
 - Options exist for improving volumetric utilization through mass transport
Keys to an Energy Efficient Design – Furnace Selection

Ideal state is:
Keys to an Energy Efficient Design – Furnace Selection

Ideal state is:

- ✓ requirements for reaction homogenity are met
 (to achieve product quality)
Keys to an Energy Efficient Design – Furnace Selection

Ideal state is:

- ✓ requirements for reaction homogeneity are met (to achieve product quality)
- ✓ an entirely container-less and continuous mode, where material itself provides the motive force to move the product through subsequent process steps, and
Keys to an Energy Efficient Design – Furnace Selection

Ideal state is:

- ✔ requirements for reaction homogenity are met (to achieve product quality)
- ✔ an entirely container-less and continuous mode, where material itself provides the motive force to move the product through subsequent process steps, and
- ✔ the use of the volume of the reactor is maximized and environmental losses are minimized.
Keys to an Energy Efficient Design – Furnace Selection

Ideal state is:

- ✓ requirements for reaction homogeneity are met (to achieve product quality)
- ✓ an entirely container-less and continuous mode, where material itself provides the motive force to move the product through subsequent process steps, and
- ✓ the use of the volume of the reactor is maximized and environmental losses are minimized.

No one furnace design perfectly captures these objectives.
Keys to an Energy Efficient Design – Furnace Selection

Ideal state is:

- ✓ requirements for reaction homogeneity are met (to achieve product quality)
- ✓ an entirely container-less and continuous mode, where material itself provides the motive force to move the product through subsequent process steps, and
- ✓ the use of the volume of the reactor is maximized and environmental losses are minimized.

No one furnace design perfectly captures these objectives. Compromises during the design process are common.
Keys to an Energy Efficient Design – Furnace Selection

Ideal state is:

- ✓ requirements for reaction homogenity are met
 (to achieve product quality)

- ✓ an entirely container-less and continuous mode, where
 material itself provides the motive force to move the
 product through subsequent process steps, and

- ✓ the use of the volume of the reactor is maximized and
 environmental losses are minimized.

No one furnace design perfectly captures these objectives. Compromises during the design process are common. Hence experimentation/scaling is critical in process optimization.
Keys to an Energy Efficient Design – Scale Up

Scaling thermal processes seldom follows linear extrapolation.
Keys to an Energy Efficient Design – Scale Up

How to Mitigate Risk During Scale Up
Keys to an Energy Efficient Design – Scale Up

How to Mitigate Risk During Scale Up

- Structure test work to evaluate whether the process thermal requirements can be decoupled from the equipment thermal requirements
Keys to an Energy Efficient Design – Scale Up

How to Mitigate Risk During Scale Up

- Structure test work to evaluate whether the process thermal requirements can be decoupled from the equipment thermal requirements
- Evaluate whether production volumes warrant continuous operation
Keys to an Energy Efficient Design – Scale Up

How to Mitigate Risk During Scale Up

- Structure test work to evaluate whether the process thermal requirements can be decoupled from the equipment thermal requirements
- Evaluate whether production volumes warrant continuous operation
- Consider if material handling can be automated
Keys to an Energy Efficient Design – Scale Up

How to Mitigate Risk During Scale Up

- Structure test work to evaluate whether the process thermal requirements can be decoupled from the equipment thermal requirements
- Evaluate whether production volumes warrant continuous operation
- Consider if material handling can be automated
- Consider magnitude of scale up; go stepwise
 1 to 10 Scale Up = Typical
 1 to 100 Scale Up = More Difficult
 1 to 10000 Scale Up = Risky
Keys to an Energy Efficient Design

Practical Solutions for Existing Systems
Keys to an Energy Efficient Design

Practical Solutions for Existing Systems

- Upgrading to more energy efficiency refractories
Keys to an Energy Efficient Design

Practical Solutions for Existing Systems

- Upgrading to more energy efficiency refractories
- Replacement of heavy belts with lighter weight belts
Keys to an Energy Efficient Design

Practical Solutions for Existing Systems

- Upgrading to more energy efficiency refractories
- Replacement of heavy belts with lighter weight belts
- Improving seal technology with a newer design
Keys to an Energy Efficient Design

Practical Solutions for Existing Systems

- Upgrading to more energy efficiency refractories
- Replacement of heavy belts with lighter weight belts
- Improving seal technology with a newer design
- Addition of heat exchangers downstream of installed abatement systems
Keys to an Energy Efficient Design

Practical Solutions for Existing Systems

- Upgrading to more energy efficiency refractories
- Replacement of heavy belts with lighter weight belts
- Improving seal technology with a newer design
- Addition of heat exchangers downstream of installed abatement systems
- Consider the life of your elements and other proper maintenance
Keys to an Energy Efficient Design

Practical Solutions for Existing Systems

- Upgrading to more energy efficiency refractories
- Replacement of heavy belts with lighter weight belts
- Improving seal technology with a newer design
- Addition of heat exchangers downstream of installed abatement systems
- Consider the life of your elements and other proper maintenance
- Consider power conditioning and filtering to minimize line losses
Keys to an Energy Efficient Design

Practical Solutions for Existing Systems

- Upgrading to more energy efficiency refractories
- Replacement of heavy belts with lighter weight belts
- Improving seal technology with a newer design
- Addition of heat exchangers downstream of installed abatement systems
- Consider the life of your elements and other proper maintenance
- Consider power conditioning and filtering to minimize line losses
- Conduct process audits to optimize consumables such as purge gases and electricity
Case Study Example – Carbon Fiber

A Model of Step-Wise Scale Up
Case Study Example – Carbon Fiber

A Model of Step-Wise Scale Up

- Harper’s first system in 1973 still in operation: 36” Wide (915mm)
Case Study Example – Carbon Fiber

A Model of Step-Wise Scale Up

- Harper’s first system in 1973 still in operation: 36” Wide (915mm)
- Harper’s first system >1m in 1978: 40” wide (1015mm) with 2 of 3 systems still in operation
Case Study Example – Carbon Fiber

A Model of Step-Wise Scale Up

- Harper’s first system in 1973 still in operation: 36” Wide (915mm)
- Harper’s first system >1m in 1978: 40” wide (1015mm) with 2 of 3 systems still in operation
- 1981: 46” wide (1200mm wide)
Case Study Example – Carbon Fiber

A Model of Step-Wise Scale Up

- Harper’s first system in 1973 still in operation: 36” Wide (915mm)
- Harper’s first system >1m in 1978: 40” wide (1015mm) with 2 of 3 systems still in operation
- 1981: 46” wide (1200mm wide)
- 1988: 68” (1750mm wide)
Case Study Example – Carbon Fiber

A Model of Step-Wise Scale Up

- Harper’s first system in 1973 still in operation: 36” Wide (915mm)
- Harper’s first system >1m in 1978: 40” wide (1015mm) with 2 of 3 systems still in operation
- 1981: 46” wide (1200mm wide)
- 1988: 68” (1750mm wide)
- 1997: 72” wide (1800mm wide)
Case Study Example – Carbon Fiber

A Model of Step-Wise Scale Up

- Harper’s first system in 1973 still in operation: 36” Wide (915mm)
- Harper’s first system >1m in 1978: 40” wide (1015mm) with 2 of 3 systems still in operation
- 1981: 46” wide (1200mm wide)
- 1988: 68” (1750mm wide)
- 1997: 72” wide (1800mm wide)
- 2005: 120” wide (3000mm wide)
Case Study Example – Carbon Fiber

A Model of Step-Wise Scale Up

- Harper’s first system in 1973 still in operation: 36” Wide (915mm)
- Harper’s first system >1m in 1978: 40” wide (1015mm) with 2 of 3 systems still in operation
 - 1981: 46” wide (1200mm wide)
 - 1988: 68” (1750mm wide)
 - 1997: 72” wide (1800mm wide)
 - 2005: 120” wide (3000mm wide)
- 2008 to Today: >12 systems @ 3000mm wide
Important Historical Steps Towards Efficiency that have Supported Carbon Fiber Commercialization:
Important Historical Steps Towards Efficiency that have Supported Carbon Fiber Commercialization:

1. Increase of Scale (Wider and Longer)
 -> Over 40 years, scale of operation has reduced costs by half
Important Historical Steps Towards Efficiency that have Supported Carbon Fiber Commercialization:

1. Increase of Scale (Wider and Longer)
 -> Over 40 years, scale of operation has reduced costs by half

2. Treatment of Oxidation Oven Exhaust & Potential for Energy Recovery
 -> At modern production scales, more than 12 kW-hr / kg of CF can be removed through energy reuse (35 kw-hr / kg -> 20 kw-hr / kg)
Important Historical Steps Towards Efficiency that have Supported Carbon Fiber Commercialization:

1. Increase of Scale (Wider and Longer)
 -> Over 40 years, scale of operation has reduced costs by half

2. Treatment of Oxidation Oven Exhaust & Potential for Energy Recovery
 -> At modern production scales, more than 12 kW-hr / kg of CF can be removed through energy reuse (35 kW-hr / kg -> 20 kW-hr / kg)

3. Closed Pipe Treatment of Furnace Exhausts & Potential for Energy Recovery
 -> Reduces NOx discharge from plants, allows for greater single site capacity
 -> Opportunity for kW-hr / kg energy reduction through recovered fuel value
Important Historical Steps Towards Efficiency that have Supported Carbon Fiber Commercialization:

1. Increase of Scale (Wider and Longer)
 -> Over 40 years, scale of operation has reduced costs by half

2. Treatment of Oxidation Oven Exhaust & Potential for Energy Recovery
 -> At modern production scales, more than 12 kW-hr / kg of CF can be removed through energy reuse (35 kw-hr / kg --> 20 kw-hr / kg)

3. Closed Pipe Treatment of Furnace Exhausts & Potential for Energy Recovery
 -> Reduces NOx discharge from plants, allows for greater single site capacity
 -> Opportunity for kw-hr / kg energy reduction through recovered fuel value

4. Low Profile Furnace Muffles for Reduced Gas Consumption
 -> Change of Furnace muffle design has allowed for 40% - 50% reduction in Nitrogen Consumptions (kg N2 / kg CF)
Important Historical Steps Towards Efficiency that have Supported Carbon Fiber Commercialization:

1. Increase of Scale (Wider and Longer)
 -> Over 40 years, scale of operation has reduced costs by half

2. Treatment of Oxidation Oven Exhaust & Potential for Energy Recovery
 -> At modern production scales, more than 12 kW-hr / kg of CF can be removed through energy reuse (35 kw-hr / kg -> 20 kw-hr / kg)

3. Closed Pipe Treatment of Furnace Exhausts & Potential for Energy Recovery
 -> Reduces NOx discharge from plants, allows for greater single site capacity
 -> Opportunity for kw-hr / kg energy reduction through recovered fuel value

4. Low Profile Furnace Muffles for Reduced Gas Consumption
 -> Change of Furnace muffle design has allowed for 40% - 50% reduction in Nitrogen Consumptions (kg N2 / kg CF)

5. Movement Towards Sealed Oxidation Oven Design
 -> Oven accounts for 45-65% of the installed electrical power (connected load) of the line and requires further design efficiencies
Case Study Example – Carbon Fiber

Important Historical Steps Towards Efficiency that have Supported Carbon Fiber Commercialization:

1. Increase of Scale (Wider and Longer)
2. Treatment of Oxidation Oven Exhaust and Potential for Energy Recovery
3. Closed Pipe Treatment of Furnace Exhausts and Potential for Energy Recovery
4. Low Profile Furnace Muffles for Reduced Gas Consumption
5. Movement Towards Sealed Oxidation Oven Design
Case Study Example – Carbon Fiber

Important Historical Steps Towards Efficiency that have Supported Carbon Fiber Commercialization:

1. Increase of Scale (Wider and Longer)
2. Treatment of Oxidation Oven Exhaust and Potential for Energy Recovery
3. Closed Pipe Treatment of Furnace Exahusts and Potential for Energy Recovery
4. Low Profile Furnace Muffles for Reduced Gas Consumption
5. Movement Towards Sealed Oxidation Oven Design

However, Challenges Remain…
Case Study Example – Carbon Fiber

Important Historical Steps Towards Efficiency that have Supported Carbon Fiber Commercialization:

1. Increase of Scale (Wider and Longer)
2. Treatment of Oxidation Oven Exhaust and Potential for Energy Recovery
3. Closed Pipe Treatment of Furnace Exhausts and Potential for Energy Recovery
4. Low Profile Furnace Muffles for Reduced Gas Consumption
5. Movement Towards Sealed Oxidation Oven Design

However, Challenges Remain…

1. **Diminishing Returns:** opportunity for increased efficiency in scale is declining
Case Study Example – Carbon Fiber

Important Historical Steps Towards Efficiency that have Supported Carbon Fiber Commercialization:

1. Increase of Scale (Wider and Longer)
2. Treatment of Oxidation Oven Exhaust and Potential for Energy Recovery
3. Closed Pipe Treatment of Furnace Exhausts and Potential for Energy Recovery
4. Low Profile Furnace Muffles for Reduced Gas Consumption
5. Movement Towards Sealed Oxidation Oven Design

However, Challenges Remain…

1. Diminishing Returns: opportunity for increased efficiency in scale is declining
2. Consumer Market Adoption: at higher volumes, a better understanding of environmental impact is required (automotive)
Case Study Example – Carbon Fiber

Specific Cost - Cumulative

USD/kg Carbon Fiber

Production Rate (MTPY CF)

PRECURSOR CAPEX INFRASTRUCTURE TOTAL COST OPEX

1m Wide
2m Wide
3m Wide
Case Study Example – Carbon Fiber

Specific Cost - Cumulative

Production Rate (MTPY CF)

USD/kg Carbon Fiber

- Precursor
- CAPEX
- INFRASTRUCTURE
- TOTAL COST
- Opex

1m Wide
2m Wide
3m Wide
Case Study Example – Carbon Fiber

Asymptote Indicative of Diminishing Returns
Case Study Example – Carbon Fiber

New opportunities as market combines equipment improvements with a holistic operating view …
Case Study Example – Carbon Fiber

New opportunities as market combines equipment improvements with a holistic operating view …

- Need to rank environmental impact of various production schemes
Case Study Example – Carbon Fiber

New opportunities as market combines equipment improvements with a holistic operating view …

- Need to rank environmental impact of various production schemes
- Must understand effect of scale and configuration on environment and cost
Case Study Example – Carbon Fiber

New opportunities as market combines equipment improvements with a holistic operating view …

- Need to rank environmental impact of various production schemes
- Must understand effect of scale and configuration on environment and cost
- Utilize data to identify opportunities for greater total efficiency
Case Study Example – Carbon Fiber

New opportunities as market combines equipment improvements with a holistic operating view …

- Need to rank environmental impact of various production schemes
- Must understand effect of scale and configuration on environment and cost
- Utilize data to identify opportunities for greater total efficiency

Outputs Tailored to Specific Site Conditions and Client Circumstances
Case Study Example – Carbon Fiber

New opportunities as market combines equipment improvements with a holistic operating view …

- Need to rank environmental impact of various production schemes
- Must understand effect of scale and configuration on environment and cost
- Utilize data to identify opportunities for greater total efficiency

Outputs Tailored to Specific Site Conditions and Client Circumstances

- Thermal Losses - kWh of Losses as a function of Scale & Operating Parameters
- Carbon Footprint - kg/hr of CO2 per kg of Material
- Impact of HCN Destruction - CAPEX, OPEX & Environmental Impacts of Achieving Lower Levels of HCN
- Nitrogen Oxides Emissions - kg/hr of Nitrogen Oxides per kg of Material
- CAPEX & OPEX Per Unit Operation for Various Line Configurations
Summary – Top 5 Things to Walk Away With
Summary – Top 5 Things to Walk Away With

1. Furnace selection inherently impacts energy efficiency and must be a balance of homogeneity of reaction, scale of production, and economics.
Summary – Top 5 Things to Walk Away With

1. Furnace selection inherently impacts energy efficiency and must be a balance of homogeneity of reaction, scale of production, and economics.

2. Scale up is a step-wise process to be carefully managed. Each successive scale up will deliver improvements in cost of production and increases in energy efficiency.
Summary – Top 5 Things to Walk Away With

1. Furnace selection inherently impacts energy efficiency and must be a balance of homogeneity of reaction, scale of production, and economics.

2. Scale up is a step-wise process to be carefully managed. Each successive scale up will deliver improvements in cost of production and increases in energy efficiency.

3. Laboratory testing and empirical data programs are a critical tool in managing scale up, in particular where there is a shift in process technology, to ensure designs are planned for maximum efficiency.
Summary – Top 5 Things to Walk Away With

1. Furnace selection inherently impacts energy efficiency and must be a balance of homogeneity of reaction, scale of production, and economics.

2. Scale up is a step-wise process to be carefully managed. Each successive scale up will deliver improvements in cost of production and increases in energy efficiency.

3. Laboratory testing and empirical data programs are a critical tool in managing scale up, in particular where there is a shift in process technology, to ensure designs are planned for maximum efficiency.

4. Atmosphere management is critical to efficient reactor design – inflows and outflows. Done ineffectively it can be a cost center.
Summary – Top 5 Things to Walk Away With

1. Furnace selection inherently impacts energy efficiency and must be a balance of homogeneity of reaction, scale of production, and economics.

2. Scale up is a step-wise process to be carefully managed. Each successive scale up will deliver improvements in cost of production and increases in energy efficiency.

3. Laboratory testing and empirical data programs are a critical tool in managing scale up, in particular where there is a shift in process technology, to ensure designs are planned for maximum efficiency.

4. Atmosphere management is critical to efficient reactor design – inflows and outflows. Done ineffectively it can be a cost center.

5. Opportunities for improvement in efficiency need not be limited to new capacity expansions. Audit your process now.
Thank You!

Learn more at harperintl.com and harperbeacon.com