

Expansion Trends in Carbon Fiber, Challenges to Capturing Growth, and a Path to Achieve Greater Capacities

Presented at JEC Asia 2012 June 27, 2012

Agenda

- About Harper International
- Historical Growth & Expansion Trends
 - Review of Scales of Operations
 - Five Important Historical Steps
- Challenges to Capturing Growth

arper

A Path to Achieve Greater Capacities

About Harper

- Headquartered outside of Buffalo, NY
- Established in 1924
- 45,000 ft² manufacturing facilities
- 5,500 ft² dedicated Technology Center
- Multi-disciplined engineering talent
 - Chemical
 - Ceramic
 - Mechanical
 - Electrical
 - Industrial

larper

- Process & Integration

About Harper

Core Skills:

Scale up of New or Challenging Processes

- 200 C 3000 C
- Atmospherically Controlled
- Continuous Processing
- Construction Techniques in
 Metallic > Ceramic > Graphitic
- Integrated Systems Design Plant Supply
- Complex Flows of Advanced Materials
- Precise Control of Gas Solid Interactions

About Harper Services to the Carbon Fiber Market

- Equipment Supply (~40 Years)
 - LT Furnaces, HT Furnaces and UHT Furnaces
 - Next-Generation Oxidation Ovens
 - Surface Treatment & Drying
 - Material Mass Transport & Waste Gas Treatment
- Complete System Supply (~15 Years; >10 contracts)
 - Systems Integration and Energy Recovery
- Feasibility Studies & Modeling
- Retrofits, Revamps & Upgrades
- Business Development & Consulting
- Training & Optimizations

Carbon Fiber Historical Growth & Expansion Trends

Review of Scales of Operations

Scales	Size Range (mm Width)	Capacity	
Production	1000mm-4200mm	100tpy to more than 4000tpy	
Industrial Scale Pilot	300mm-1000mm	20tpy-100tpy	
Micro Scale (University, Institute)	<100mm	Less than 1tpy	

Carbon Fiber Historical Growth & Expansion Trends

Five Important Historical Steps Towards Efficiency that have Supported Carbon Fiber Capacity Expansion:

- 1. Increase of Scale (Wider and Longer)
- 2. Treatment of Oxidation Oven Exhaust & Potential for Energy Recovery
- 3. Closed Pipe Treatment of Furnace Exhausts & Potential for Energy Recovery
- 4. Low Profile Furnace Muffles for Reduced Gas Consumption
- 5. Movement Towards Sealed Oxidation Oven Design

Five Important Historical Steps Towards Efficiency

Step 1: Increase of Scale

Increase of Scale Trends, as Led by Harper International

- •First System in 1973 still in operation: **36**" Wide (915mm)
- •First System > 1m in 1978: 40" wide (1015mm) with 2 of 3 systems still in operation
- ■1981: 46" wide (1200mm wide)
- ■1988: 68" (1750mm wide)
- ■1997: 72" wide (1800mm wide)
- ■1997: 163" wide (4141mm wide)
- •2005: 120" wide (3000mm wide)
- •2008 to Today: >12 systems @ 3000mm wide
- > 100 Units Carbon Fiber Projects to date

Trend of Increase in Scale: Carbon Fiber Conversion Cost Model

Specific Cost - Cummulative

← PRECURSOR-=- CAPEX ---- INFRASTRUCTURE---- TOTAL COST----- OPEX

Cost Dynamics as a Function of Scale-Up

Five Important Historical Steps Towards Efficiency

Step 2: Treatment of Oxidation Oven Exhaust

Treatment of Oxidation Oven Exhaust: Integration & Heat Recovery 2m and 3m (6 Zone Designs)

Line Width	m	2m Wide	3m Wide
Oxidation Oven Zones	#	6	6
Exhaust Rate	Nm3/hr	20760	43200
Exhaust Temp	С	260	260
Ambient Temp	С	25	25
Delta T	С	235	235
Energy Lost	kw	1633	3399

Treatment of Oxidation Oven Exhaust: Waste Gas Treatment Systems

RTO Pros / Cons

- •Lower Capital Cost
- •Lower Operating Cost
- •Relies on in Media to Store / Transfer Energy
- •Media Susceptible to Fouling - Not Ideal for Fouling Streams
- •Some Techniques Exist for Reduction of Maintenance Cleaning (Sacrificial Fouling Surfaces)
- •Self Contained Energy Recovery

Treatment of Oxidation Oven Exhaust

Oven Make Up Air Preheated to >200C in the 2nd Stage Preheater

Five Important Historical Steps Towards Efficiency

Step 3: Closed Pipe Treatment of Furnace Exhaust

Closed Pipe Treatment of Furnace Exhaust

TOX capable of also treating LT & HT Process Exhausts as well the Ventilation Hoods (LT Hoods, HT Hoods, Oven Vestibules**)**

Closed Pipe Treatment of Furnace Exhaust

Gas Abatement - Collection

Five Important Historical Steps Towards Efficiency

Step 4: Low Profile Muffle Design To Reduce Nitrogen Consumption

Low Profile Muffle Design To Reduce Nitrogen Consumption

Harper LT Furnace 3 meter wide low-profile muffle

Low Profile Muffle Design To Reduce Nitrogen Consumption

Nitrogen Consumption Model Reduction Based on Muffle Design

Five Important Historical Steps Towards Efficiency

Step 5: Shift Towards Sealed Oxidation Oven Design

Shift Towards Sealed Oxidation Oven Design

larper

Performance Metrics

- Temperature (+ or 2 C)
- Velocity
- Seal Performance
- Construction Techniques (Modular)
- Inst. & Control Advances (Flow Control)
- Heat Reutilization
- > 75%

(2x - 3x More)

(Absolute)

(Efficiency, Guaranteed)

Shift Towards Sealed Oxidation Oven Design

Greater Active Volume Due to Seal Advances

Distance into Oven from endseal slot opening (mm)

arper

Shift Towards Sealed Oxidation Oven Design

Integration & Heat Recovery 2m and 3m (6 Zone Designs)

LineWidth	m	2m Wide	3m Wide
Oxidation Oven Zones	#	6	6
Total Exhaust Rate	Nm3/hr	20760	43200
Exhaust Temp	С	260	260
Ambient Temp	С	25	25
Delta T	С	235	235
Energy Lost	kw	1633	3399

% MakeUp to Exhaust	%	0.75	0.75
Preheated Make Up	Nm3/hr	15570	32400
Make Up Temperature	С	260	260
Ambient Temp	С	25	25
Offset	kw	1225	2549
Hours Per Year	kw	>7000	>7000
USD\$ / kw-hr	\$	\$0.10	\$0.10
USD\$ / year	\$	\$903,150	\$1,879,385

Historical Growth & Expansion Trends – Why are These Steps Important?

- Increase of Scale (Wider and Longer)
 -> Over 40 years, scale of operation has reduced costs by half
- Treatment of Oxidation Oven Exhaust & Potential for Energy Recovery
 At modern production scales, more than 12 kW-hr / kg of CF can be removed through energy reuse (35 kw-hr / kg -> 20 kw-hr / kg)
- 3. Closed Pipe Treatment of Furnace Exhausts & Potential for Energy Recovery
 - -> Reduces NOx discharge from plants, allows for greater single site capacity
 - -> Opportunity for kw-hr / kg energy reduction through recovered fuel value
- 4. Low Profile Furnace Muffles for Reduced Gas Consumption
 - -> Change of Furnace muffle design has allowed for 40% 50% reduction in Nitrogen Consumptions (kg N2 / kg CF)
- 5. Movement Towards Sealed Oxidation Oven Design
 - -> Further energy reductions in oxidation and abatement are possible

Carbon Fiber Expansion: Challenges to Capturing Growth

Challenges in Carbon Fiber Operations to Capturing Projected Growth

- Diminishing returns in optimization of current scale systems
- Development costs associated with next generation technology
- Need for increased efficiency of chemical reaction

Reducing carbon footprint

Challenges in Carbon Fiber Operations to Capturing Projected Growth

Specific Cost - Cummulative

← PRECURSOR- = -- CAPEX - _ _ _ INFRASTRUCTURE- * - TOTAL COST - × -- OPEX

Cost Dynamics as a Function of Scale-Up

A Path to Achieve Greater Capacities

Harper

Harper Beacon

Challenges:

- 1) <u>Diminishing Returns</u>: The Opportunity for Increased Efficiency In Scale is Declining
- 2) <u>Consumer Market Adoption</u>: At Higher Volumes a Better Understanding of Environmental Impact is Required (Automotive)

Opportunities:

- 1) <u>Create Tool</u> to Rank Environmental Impact of Various Production Schemes
- 2) <u>Understand Impact of Scale and Configuration on Environmental as well as Cost</u>
- 3) <u>Use the Tool to Identify</u> Opportunities for Greater Total Efficiency

Harper Beacon: Inputs

Cost Factors: 41 Variables in Core Cost Model

Line Sizing Factors: 41 Variables in Core Cost Model

arper

Harper Beacon: Inputs

Waste Gas Treatment Configuration: 15 Variables

Energy Source: 15 Variables

Theoretical Factors: 10 Variables

Environmental Losses: 30 Variables

Beacon Comprehensively Evaluates 152 Variables

Harper Beacon: Outputs Quantifies Environmental and Energy Efficiency

Cost Model Outputs:

CAPEX and OPEX Per Unit Operation for Various Line Configurations.

Outputs Tailored to Specific Site Conditions and Client Circumstances

Carbon Footprint:

kg/hr of Carbon Dioxide Per kg of CF

Compares to Theoretical Minimum as Benchmark of Efficiency

Comprehensive Function

For a Full List of Capabilities Consult Harper

Harper Beacon: Outputs Quantifies Environmental and Energy Efficiency

Nitrogen Oxides Emissions:

kg/hr of Nitrogen Oxides Per kg of CF Varies with Selection of Waste Gas Abatement and Line Configuration

Impact of HCN Destruction:

CAPEX, OPEX and Environmental Impacts of Achieving Lower Levels of HCN.

Evaluate Trade of Lower HCN and Higher CO2

Thermal Losses:

kWh of Losses as a function of Scale & Operating Parameters Allows for Quantification of Anticipated Thermal Losses and Design Optimization

For a Full List of Capabilities Consult Harper

Harper Beacon

Carbon Dioxide Emissions:

- Expressed in total kg/hr of CO2 Emitted and kg/hr of CO2 Per kg of CF
- Compare to Theoretical Minimum. <u>Baseline Value based on</u>:
 - Carbon Recovery of Feedstock
 - Specific Heat to Reach Process Temperatures
- Comparison of Carbon Emission to Theoretical Limit Provides a Metric for Optimization and Continued Process Refinement

CO2 Emissions Modeling

Theoretical CO2 Emission for CF Production*:

Polymer Losses (Footprint of Polymer Production Ignored) Sensible Heat of Reaction (Polymer and Purge Gases) Source of Energy

Actual CO2 Emission for CF Production*:

Polymer Losses(Footprint of Polymer Production Ignored)

Energy Summarized by Unit Operation

Thermal Losses

- Heat Rejected to Atmosphere

- Heat Rejected To Cooling Water

Waste Gas Abatement Technology (Major Schemes Considered)

Source of Energy

* Energy Requirement to Produce Purge Gas Ignored

Harper Beacon

Carbon Dioxide Emissions:

CO2 Emissions Modeling

Sample Data from *www.harperbeacon.com*

CO2 Emissions Modeling

Primary Results from Sample Evaluation:

Production Rates:	500 – 2250	TPY
Line Sizes:	1750 & 3000	mm Wide
CO2 Emissions*:	9.7 – 23.4	kg CO2 Per kg CF
Theoretical CO2*:	2.7 (average)	kg CO2 Per kg CF
	(*Energy to Produce I	Purge Gas Ignored)
CAPEX	\$2.17 – \$4.55	USD / kg of CF
OPEX	\$6.27 - \$14.58	USD Per kg CF

Sample Data from www.harperbeacon.com

Summary

Plan to capture greater opportunities ahead must include continued equipment improvements with a holistic operating economics perspective.

Thank you for your time!

Spark the future.™

Visit us at harperintl.com and harperbeacon.com

