

HOW MASS AUTOMOTIVE USE WILL AFFECT THE WAY CARBON FIBER PRODUCERS MUST THINK ABOUT THEIR FACILITY'S CARBON FOOTPRINT

Bill Stry

Senior Process Technology Engineer

GOCarbonFiber 2013 October 9th, Seattle WA

Agenda

- Automotive life cycle analysis challenges CFRP producers to reduce their facility's carbon footprint
- The opportunity and challenge for alternate CF precursors
- The affect of increased scale of operation on safety and environmental practices

arper

Sample Automotive LCA

Cumulative GHG emissions

Harper

Review of Base Data

 The GREET2 Vehicle-Cycle Model (Argonne National Laboratory, 2012) provides a database of material production energies and associated emissions

Review of Base Data

Data from <u>www.harperbeacon.com</u>

larper

Carbon Fiber Embodied Energy

• The GREET2 value for CFRP (MJ/kg) comes from...

 $E_{CFRP} = (E_{epoxy}X_{epoxy} + E_{CF}X_{CF}) \times \text{Waste Factor} + \text{Fabrication E}$ $185 \quad 128 \quad 207 \quad 1.14 \quad 12$ $x0.7 \quad x0.3$

• Carbon fiber 207 MJ/kg is 10X glass fiber and near virgin aluminum

Carbon Fiber Process Overview

Carbon Fiber Thermal Conversion Process

PAN Precursor Thermal Conversion Energy Use

Economies of Scale

(All Other Factors Held Constant at Third Quarter 2011 USGC Prices)

Carbon Fiber Production Cost by Plant Capacity (Cost Per Ton Carbon Fiber)

Courtesy of A. Coker; J. Goh; K. Patel, "Carbon Fiber", Nexant, Process Evaluation Research Planning

Energy Focus – Advanced, Integrated Flowsheets

HOOD FLOWS

Lowers energy use

•Ties together multiple unit operations

Abatement Energy Focus – Operational Issues

•Particulate origin is Si in finish oils of precursor

•SiOx particulate not destroyed by thermal abatement

Waste Gas Abatement Energy Use (31% of total conversion energy)

- Abatement energy use (and CAPEX) driven by amount of gas flow
- Amount of gas flow is driven by process chemistry and equipment
- PAN typically requires 160 200 kg of exhaust per 1 kg carbon fiber produced
- This amount necessary for...
 - Minimizing particulate and condensates getting on the fiber
 - Keeping down HCN levels in the work area (NIOSH REL = 4.7 ppm)
 - Keeping down particulate and condensation buildup on oven surfaces

Image courtesy of Anguil Environmental

Waste Gas Abatement Energy Use (31% of total conversion energy)

- PAN typically requires 160 200 kg of exhaust per 1 kg carbon fiber
- Alternate precursors are likely to lower this ratio
- Some, such as polyolefins, may use wet process stabilization
- Some, such as refined lignin, may use scrubbers in lieu of incineration
- Some, such as mesophase pitch, may use solvent recovery
- What will be the particulate generation of alternate precursors?

Ovens Energy Use – 39% of Total

Ovens Energy Consumption for 3000 tpy with 200 C Heated Makeup Air Total = 4405 kW = 38 MJ/kg-CF

Ovens power consumption can vary +/- 30% due to variances in recipe and line configuration

Oxidation Ovens Energy Use (39% of total conversion energy)

- Today PAN typically requires 60 90 minutes of residence time
- Technology improvements may greatly reduce the required time
- Finer filaments roughly, 1/2 the diameter needs 1/4 the residence time
- Atmosphere pressure plasma (RMX, ORNL) may require only 1/3 of the conventional residence time
- If these technologies combined, PAN oxidation times < 10 minutes look feasible

Oven Instrumentation Can Benefit Energy Use and Product Quality

- Measured flow rates at all exhausts and makeup air locations provides real-time knowledge of:
 - Rate of make-up air use and cold air infiltration
 - Total flow and temperature of oven exhaust sent to abatement system
- Measured oven oxygen and /or VOC content provides information for setting optimum exhaust flow rates
- Slot height controls can lower cold air infiltration and escape of oven gas
- Array monitoring of temperature can increase processing speed and product quality

Safety Aspects for Alternate Precursors

- PAN risks include exposure to HCN and chance of fire from exothermic runaway
- Alternate precursors present different challenges
- Polyolefins may use sulfuric acid bath for stabilization
- Lignin or cellulosic materials may be processed as mats with greater risk of

exothermic runaway

This content presented in partnership with

Summary:

Increasing attractiveness of CF for automotive

- Decrease energy required in the CF process
 - Integrated energy recovery technology (and further optimization)
 - Lower energy thermal processes
 - Cleaner precursors and/or more VOC tolerant processes
- Use low GHG energy source for CF production (i.e. Moses Lake

GHG

• CF composites made with thermoplastic resins

Thank you for your time!

Visit us at harperintl.com and harperbeacon.com

