

CRITICAL OXIDATION OVEN DESIGNS TO ENABLE RESEARCH SYSTEM GOALS

William J. Stry, Ph.D. Harper International

Carbon Fiber R&D Workshop Buffalo, NY July 25th, 2013

Introduction

- What is critical in the CF oxidation process?
 - Heat transfer
 - Atmosphere composition
 - Oven sealing
- All of these must be managed as processes go from research scales to pilot scales to commercial production

Carbon Fiber Carbonization Process – Scales of Operation

Courtesy of Georgia Institute of Technology

Oven Heat Transfer

- Convection air flow both heats and cools the fiber material
- For exothermic material at steady-state

$$_{D}$$
m $_{D}$ H = h A ($T_{Product} - T_{Oven}$)

where

Dm is the mass rate of fiber, DH is the enthalpy of reaction,

h is the heat transfer coefficient, A the heat transfer area, and

 $(T_{Product} - T_{Oven})$ is the elevation of the fiber temperature above the oven temperature

Oven Heat Transfer

- The heat transfer coefficient depends primarily on air velocity
- Textbook correlations can be applied

$$Nu_D = Re_D Pr^{1/3} (f/8)$$

Rearranging the above equation....

$$h = (Pr^{1/3} k/_n) (f/8) V$$

Where Pr, k, and $_n$ are air properties f is the friction factor, and V is the air velocity

Oven Heat Transfer

The previous equation can be applied to different sizes of ovens

Oven Atmosphere Composition

- Stabilization reactions will produce off-gas components
 - For PAN, most important component is HCN

IDLH = 50 ppm; NIOSH REL = 4.7 ppm

- Also Cl, S, and Si known bad actors
- Alternative precursors may have these or other components

Oven Composition Example

Oven Composition Example

Oven Atmosphere Composition

- Concentrations increase with higher conversion rate, and concentrations decrease with higher oven exhaust rate
- The higher the concentration inside the oven, the higher the concentration in the workspace outside the oven
- Knowledge of the critical component compositions is valuable
 - For health and safety
 - For product quality (final CF properties)
 - For energy efficiency (optimization of exhaust rates)

Measurement of Oven Composition

- Need access to the oven atmosphere
 - At least at 2 locations per zone
 - Even better, at each pass
- Instrumentation (FTIR, GC, Mass-Spec, Stack gas analyzers)

Harper's portable FTIR unit

- Oven sealing affects the operation in several ways
 - Health and Safety
 - Escape of oven gas means exposure to HCN and other off-gases
 - Escape of oven gas creates a hotter workspace
 - Efficiency
 - Ingress of ambient air cools the oven ends reducing the useful volume
 - Ingress of ambient air adds to waste gas abatement cost

Buoyancy drives the problem

• Oven height creates buoyancy

Neutral pressure height

• This phenomenon is called the chimney effect

Oven gas escapes at upper slots

Cold air infiltration at lower slots

Oven cross-section schematic

• Pressure difference over the height of the oven is approximately:

$$_{D}P = _{r_{amb}} g (Z - Z_{neutral}) (1 - T_{amb} / T_{oven})$$

• Flow through the oven slots follows from Bernoulli principle:

$$_{\rm D}P = K \frac{1}{2} rV^2$$

• V is the air velocity at the slots, so that flow Q into or out of a slot is:

$$Q = VA = V(Slot gap x Slot width)$$

Larger (higher) ovens have greater velocities and wider slots

Oven cross-section schematic

Harper Micro-Line Oven - Flow Schematic

FIG. 3

Summary / Key Points

- Heat transfer largely independent of oven scale
 - Match air velocity, match heat transfer
 - Pilot scale ovens can have low turbulence or laminar flow

- Reaction kinetics independent of oven scale
 - Match temperature and velocity, match kinetics
 - Off-gas composition useful indicator of reaction

- Oven sealing depends on scale of operation
 - The larger the oven, the larger the chimney effect and the harder to seal

Thank you for your time!

Spark the future.™

Visit us at harperintl.com

