

Distinguishing Features of a Carbonization Line Designed for Heavy Tows

GOCarbonFiber

October 11, 2017

Presented by: Bill Stry, PhD

About Harper

- Headquartered in Buffalo, NY, USA
- An employee-owned business
- State-of-the-art Technology Center
- Access to carbon fiber piloting facilities
- Multi-disciplined engineering talent
 - Chemical
 - Ceramic
 - Mechanical
 - Electrical
 - Industrial
 - Process & Integration

Agenda

- 1. Thermal model of light and heavy tows in an oxidation oven
- 2. Highlight differences of heavy tows and how this guides the equipment design and operation

Oxidation Oven Thermal Model

Model Assumptions

- PAN filaments are round with 11.5 micron diameter
- Filament volume fraction 0.6 [1]
- PAN emissivity = 0.85 [2]
- Other properties and constants at end of slide set

Comparison of Tow Cross-Sections (mm)

Additional Model Assumptions

- All significant heat and mass transfer is in the vertical direction
- Exothermic energy is only significant when the tow temperature is near the oven temperature

OVEN ENTRANCE

PASSBACK ROLL

Oxidation Oven Thermal Model

Thermal Model of Tows Heatup

Convection [3]:
$$h_c = \left(\frac{k}{d}\right) \left[8.1 + 0.019 \left(\frac{Vd}{v}\right)^{.83}\right]$$

Radiation [4]:

$$h_{r,T_0 \to T_1} = \sigma \epsilon F \frac{\int_{T_0}^{T_1} (T_1^4 - T^4) dT}{\int_{T_0}^{T_1} (T_1 - T) dT} = \frac{2\sigma \epsilon F}{(T_1 - T_0)^2} \left[\frac{4T_1^5 + T_0^5}{5} - T_1^4 T_0 \right]$$

Solution Equation for Tow Heatup [5]

$$\frac{T(z,t) - T_1}{T_0 - T_1} = 2 \sum_{n=1}^{\infty} \left(\frac{\sin \mu_n L}{\mu_n L + \sin \mu_n L \cos \mu_n L} \right) e^{-\alpha_{tow} \mu_n^2 t} \cos \mu_n z$$

$$\tan \mu_n L = \frac{h_c + h_r}{\mu_n k_{tow}}$$

$$\frac{1}{k_{tow}} = \frac{\theta_{fiber}}{k_{fiber}} + \frac{1 - \theta_{fiber}}{k_{air}}$$

$$\alpha_{tow} = \frac{k_{tow}}{\rho_{tow} c_{p,tow}}$$

Thermal Calculations – Heatup

Discussion

- Increasing tow thickness leads to a significant portion of the pass length being used just for heat up
 - This favors slower line speeds (wider)
 - This favors ovens with fewer passes (longer)
- Increased oven air velocity only helps a little (does not change radiation)

Oxidation Oven Thermal Model

Temperature Rise Due to Exothermic Energy Release

$$T(z) - T_1 = \frac{\ddot{u}L^2}{2k_{tow}} \left[1 - \left(\frac{z}{L}\right)^2 + \frac{2k_{tow}}{h_c L} \right]$$

$$\ddot{u} = \frac{\eta \rho_{tow} \Delta H}{\tau_{Residence}}$$

$$\eta = \frac{Peak\ Local\ Exotherm}{Mean\ Exotherm} = \frac{4}{3}$$

A rule of thumb is 1/3 of the exotherm is in the first half of the residence time and 2/3 is in 2nd half of the residence time.

Exothermic Temperature Rise - Calculations

60 Minutes	Oven velocity		12K	50K	80K	500K
60 Minutes	2.5 m/s	Max Rise ⁰ C	10	15	20	53
Residence	5.0 m/s	Max Rise ⁰ C	6	9	12	32
Time	Tow Delta $(z = 0 \text{ to } z = L)$		0.1	0.3	0.6	3.6

120 Minutes	Oven velocity		12K	50K	80K	500K
	2.5 m/s	Max Rise ⁰ C	5	8	10	26
Residence	5.0 m/s	Max Rise ⁰ C	3	4	6	16
Time	Tow Delta $(z = 0 \text{ to } z = L)$		0.1	0.2	0.3	1.8

Discussion

- Increasing tow thickness means significant differences between the tow temperature and the oven setpoint temperature
- Oven air velocity is the important variable radiation does not help – which suggests that heavy tow ovens be designed for higher air velocities

Oxidation Oven Thermal Model

Tow Cool Down

Same solution equation as tow heatup, except that there is no forced convection

Instead there is natural convection

$$h_c = \left(\frac{k}{d}\right) \left[0.27 \ Ra^{1/4}\right]$$
; Bottom side

$$h_c = \left(\frac{k}{d}\right) \left[0.14 \, Ra^{1/3}\right]; Top \, side$$

$$Ra = \frac{(T_{tow} - T_{ambient})}{(T_{ambient} + 273)} \frac{gd^3}{\alpha v}$$

OVEN

PASSBACK

ROLL

EXIT

Passback Roll Temperature

The roll temperature balances heat flowing in from the tows with heat flowing out to ambient

Heat out of the rolls by convection and radiation

$$(h_c + h_r)A'_{roll}(T_{roll} - T_{ambient})$$

Heat into the rolls from the tows

$$h_{tow \rightarrow roll} A_{roll} (T_{tow} - T_{roll})$$

$$h_{c} = \left(\frac{k}{d_{roll}}\right) \left[0.39Ra^{1/4} + 0.04\left(\frac{V_{roll}d_{roll}}{v}\right)^{0.8}\right]$$

Heat out of the rolls by conduction at the journals

$$2\left(\frac{KA}{L}\right)_{Journal} \left(T_{roll} - T_{ambient}\right)$$

Thermal Calculations – Tows Just After a Roll 240 C Oven

12K After Passback Roll at 10 m/min

80K After Passback Roll at 10 m/min

50K After Passback Roll at 10 m/min

500K After Passback Roll at 10 m/min

Tow Cool-Down Calculations

Tow Cool-Down Calculations

Discussion

- The heavier the tow, the higher the roll temperatures
 - Passive cooling is inefficient to shed heat from tows
 - Active cooling may be required on heavy tow lines
- Heavy tow lines at lower line speeds will have less problem

Thermal Calculations – Tow Re-Entry Temperature

Thermal Calculations – Heat Loss Per Pass

Discussion

- End-seals have beneficial energy exchange
- Heavy tows will increase the energy penalty for many passes
 - This suggests longer ovens with fewer total passes
 - If active cooling used on rolls, will increase the energy penalty

Thermal Calculations –

Tows Just After an Actively Cooled Passback Roll

12K After Passback Roll at 10 m/min 240 C Oven 50K After Passback Roll at 10 m/min

Position in tow thickness (micron)

80K After Passback Roll at 10 m/min

Comparisons of Passive and Active Roll Cooling

240 C Oven; 3 m Towband; 273 mm Roll 1 m Endseal Length; 1 m From Endseal to Roll

Heat transfer from tows to roll (kW)			Passive roll	Active roll
at Linespeed of 10 m/s			cooling	cooling
Tow K	Z (micror	1)		(50 C)
12K	346		1.0	4.8
50K	519		1.3	6.9
80K	693		1.5	8.3
500K	1731		2.1	12

Tow temperature re-entering oven (deg C)			Passive roll	Active roll
at Linespeed of 10 m/s			cooling	cooling
Tow K	Z (micror			(50 C)
12K	346		142	128
50K	519		149	134
80K	693		157	143
500K	1731		189	179

Heat loss from towband per passback (kW)			Passive roll	Active roll
at Linespeed of 10 m/s			cooling	cooling
Tow K	Z (micror	1)		(50 C)
12K	346		15	17
50K	519		21	25
80K	693		26	30
500K	1731		40	48

Discussion

- Unclear impact of temperature gradient inside tow
- The heavier the tow, the more significant the energy penalty from active cooling the rolls

Final Thoughts

- The different heating and cooling behavior of light and heavy tows leads to differences in the ovens and passback rolls
 - Wider Slower Longer
 - Passive cooling → Active cooling
- Mass transfer, such as diffusion of oxygen into the tow, likely also an important difference with heavy tows

Material Properties and Constants

Filament volume fraction in the tow [1]: $heta_{fiber} = 0.6$

PAN filament thermal conductivity [1]: $k_{fiber} = 0.090 \frac{W}{m C}$

PAN specific heat [7]: $c_p = 1280 \; \frac{J}{kg \; C}$

PAN density [7]: $\rho_{fiber} = 1170 \ \frac{kg}{m^3}$

PAN emissivity [2]: $\epsilon = 0.85$

PAN oxidation, overall heat of reaction [1,9]: $\Delta H = 1.96 \frac{MJ}{kg}$

Heat transfer coefficient, tow to roll [8]: $h_{tow \rightarrow roll} = 100 \; \frac{W}{m^2 \; C}$

Various air properties from [4] or Wikipedia

References

- [1] Dunham and Edie, Carbon, Vol. 30, No. 3, pp. 435-450, 1992.
- [2] Mason and Coleman, *Technical Report 67-86 –CM*, U.S.Army Natick Laboratories, 1967.
- [3] Kops and Arenson, 15th Brazilian Congress of Mech. Engr., 1999.
- [4] Lienhard, J.H., A Heat Transfer Textbook, 1981.
- [5] Arpaci, V.S., Conduction Heat Transfer, 1966.
- [6] Burmeister, L. S., Convection Heat Transfer, 1883.
- [7] Polymer Properties Database, www.polymerdatbase.com, 2015.
- [8] Stry, W.J., Back Calculated Heat Transfer Coefficient (Harper internal memo), 2008.
- [9] Sprague, P.S., *US Patent #6,776,611*, 2004.

Thank you for your time! We welcome any questions...

Visit us at <u>harperintl.com</u>

