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Agenda

1. Thermal model of light and heavy tows in an oxidation oven

2. Highlight differences of heavy tows and how this guides the
equipment design and operation




Oxidation Oven Thermal Model
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Model Assumptions

PAN filaments are round with 11.5 micron diameter
Filament volume fraction 0.6 [1]
PAN emissivity = 0.85 [2]

Other properties and constants at end of slide set




Comparison of Tow Cross-Sections (mm)

17 ) 20
518 [.693

¥
50K ' sk

2000 filaments/mm 3000 filaments/mm 4000 filaments/mm

50
(1.732

200K

10,000 filaments/mm




Additional Model Assumptions

 All significant heat and mass transfer is in the vertical direction

* Exothermic energy is only significant when the tow temperature is

near the oven temperature

OVEN ENTRANCE

PASSBACK ROLL




Oxidation Oven Thermal Model
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Thermal Model of Tows Heatup
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Solution Equation for Tow Heatup [5]
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Thermal Calculations — Heatup
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Discussion

* Increasing tow thickness leads to a significant portion of the pass length
being used just for heat up

* This favors slower line speeds (wider)
 This favors ovens with fewer passes (longer)

* Increased oven air velocity only helps a little (does not change radiation)
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Temperature Rise Due to Exothermic Energy Release

Solution 112

U Z\2 ZktOW]
T(z) —T, = 1—(2) +
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Where: = NProwAH

TResidence

Peak Local Exotherm 4
77 = = —

Mean Exotherm 3

A rule of thumb is 1/3 of the exotherm is in the first half of the
residence time and 2/3 is in 2nd half of the residence time.




Exothermic Temperature Rise - Calculations

Oven velocity
2.5m/s | Max Rise °C
5.0m/s | Max Rise °C
Tow Delta(z=0toz=L)

60 Minutes
Residence
Time

Oven velocity
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5.0m/s | Max Rise °C
Tow Delta(z=0toz=L)

120 Minutes
Residence
Time




Discussion

 Increasing tow thickness means significant differences between
the tow temperature and the oven setpoint temperature

* Oven air velocity is the important variable - radiation does not
help — which suggests that heavy tow ovens be designed for
higher air velocities
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Oxidation Oven Thermal Model
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Tow Cool Down

Same solution equation as tow heatup, except that there is no
forced convection

Instead there is natural
convection

k 1 .
h. = P [0.27 Ra /4];Bottom side

k
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Passback Roll Temperature

The roll temperature balances heat flowing in from the tows
with heat flowing out to ambient

Heat out of the rolls by . f
convection and radiation Heat into the rolls from the tows
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Thermal Calculations — Tows Just After a Roll
240 C Oven
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Tow Cool-Down Calculations

240 C Oven

3 m Towband
Passback Roll Calculations 273 mm Roll
1 m Endseal Length
1 m From Endseal to Roll
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Tow Cool-Down Calculations

240 C Oven
Passback Roll Temperature 3 m Towband

273 mm Roll
1 m Endseal Length
1 m From Endseal to Roll
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Discussion

* The heavier the tow, the higher the roll temperatures
« Passive cooling is inefficient to shed heat from tows
 Active cooling may be required on heavy tow lines

* Heavy tow lines at lower line speeds will have less problem




Thermal Calculations — Tow Re-Entry Temperature
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Thermal Calculations — Heat Loss Per Pass

240 C Oven
Heat Loss from Towband per Passback 3 m Towband

273 mm Roll
1 m Endseal Length
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Discussion

* End-seals have beneficial energy exchange

* Heavy tows will increase the energy penalty for many passes
* This suggests longer ovens with fewer total passes
* If active cooling used on rolls, will increase the energy penalty




Thermal Calculations -
Tows Just After an Actively Cooled Passback Roll
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3 m Towband; 273 mm Roll
1 m From Endseal to Roll

Comparisons of Passive and Active Roll Cooling

240 C Oven;
1 m Endseal Length;

Heat transfer from tows to roll (kW)
at Linespeed of 10 m/s

Tow K Z (micron)

Passive roll
cooling

Active roll
cooling
(50 C)

12K 346

1.0

4.8
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1.3

6.9

80K 693

1.5

8.3

500K 1731

2.1
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Tow temperature re-entering oven (deg C)
at Linespeed of 10 m/s

Tow K Z (micron)

Passive roll
cooling

Active roll
cooling
(50 C)

12K 346

142
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Heat loss from towband per passback (kW)
at Linespeed of 10 m/s

Tow K Z (micron)

Passive roll
cooling

Active roll
cooling
(50 C)
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Discussion

* Unclear impact of temperature gradient inside tow

* The heavier the tow, the more significant the energy penalty
from active cooling the rolls




Final Thoughts

* The different heating and cooling behavior of light and heavy tows
leads to differences in the ovens and passback rolls

- Wider - Slower - Longer
- Passive cooling — Active cooling

* Mass transfer, such as diffusion of oxygen into the tow, likely also an
important difference with heavy tows




Material Properties and Constants

Filament volume fraction in the tow [1]: Ofiper = 0.6
PAN filament thermal conductivity [1]:

PAN specific heat [7]:

. kg
PAN density [7]: Priver = 1170 m3

PAN emissivity [2]: e = 0.85

M
PAN oxidation, overall heat of reaction [1,9]: AH = 1.96 k_;

Heat transfer coefficient, tow to roll [8]: Rioworoll =

Various air properties from [4] or Wikipedia
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Thank you for your time!
We welcome any questions...
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