

ENABLING OPTIMIZATION AND GROWTH OF CARBON FIBER PRODUCTION THROUGH COMPUTATIONAL FLUID DYNAMICS [CFD] MODELING ANALYSIS

Dr. Bill Stry, David Geldard, Dr. Peter Witting JEC EUROPE COMPOSITES SHOW March 11th, 2014 Paris, France

Agenda

- Carbonization line overview
- CFD gas flow modeling applied to oxidation oven end seals
- CFD gas flow modeling applied to LT furnace vents

Carbon Fiber Process Overview

Carbon Fiber Thermal Conversion Process

Example Carbonization Line

Post treatment

LT HT UHT Winding

Pretreatment Oxidation Ovens

Unwinding

Carbon Line Optimization and Growth Challenges

OVENS

- Efficiency Floor Space
 - 100% of heated length at temperature
- Efficiency Energy Consumption
 - Prevent cold air infiltration
- Safety Prevent escape of oven gas
 - Eliminate HCN in working areas

Oven End Seals – Modeling Objectives

- Predict temperature uniformity
- Predict escape of oven gas
- Predict cold air infiltration

... While Varying Oven Width, Height, and # Passes

Focus on End Seals - Features in CFD Model

- 1. Exhaust flow rate
- 2. Slot opening height (inside and outside)
- 3. Number of divider plates
- 4. Exhaust damper position

CFD Results – Velocity & Temperature

CFD Results Summary: Oxidation Oven End Seals

Oven Atmosphere Sealing – Field Data

Velocity and Temperature - Affect of Slot Height

Velocity and Temperature - Affect of Slot Height

Oven CFD Model – Results Overview

- 1. The chimney affect is influenced by the towband and by the presence of divider plates.
- 2. Slot opening heights have a major impact on the performance of the ovens, especially with respect to cold air infiltration.

Example Carbonization Line

Post treatment

LT HT UHT Winding

Pretreatment Oxidation Ovens

Unwinding

Carbon Line Optimization and Growth Challenges

FURNACES

- Efficiency Floor Space
 - 100% Uniformity of Product Across Width
- Efficiency Improve utilization
 - Prevent tow damage
 - Prevent fiber material clogging of vents

LT Muffle Furnace – Design Objectives

- Uniform gas flow & temperature across furnace
- Vent process gas, for PAN precursor ~30% of the mass
- Prevent plugging (that can interrupt production)

LT Muffle Furnace Features in CFD Model

- 1. Exhaust flow rate
- 2. Furnace width
- 3. Vent positions sides or bottom of muffle
- 4. Vent geometry restrictive bottom vs. open bottom

Vent Geometries

Side Vents –

- No Opening Across Bottom
- At Muffle Mid-Height

Bottom Vents -

- Below muffle
- Open Across Entire Width

Restrictive Type

Non-Restrictive Type

Model Geometries & Symmetries

- Model is based on 3m wide furnace
- Uniform flow of nitrogen across width, totaling 200 kg/hr

Side Vent Velocity

Maximum velocity near vent at tow line ~ 2.0 m/sec

Side Vent Streamlines

Bottom Vent , Restrictive Type – Velocity

Bottom Vent Results – Restrictive Vent - Streamlines

 The Restrictive Bottom Vent provides a more even draw across the muffle.

 The restriction creates a swirl pattern in the vent.

Bottom Vent, Non Restrictive Type - Velocity

Bottom Vent, Non Restrictive Type Flow Distribution Across Width

Plane of Symmetry

Bottom Vent, Non Restrictive Type - Streamlines

The Non-Restrictive
Bottom Vent creates less
swirl compared to the
Restrictive Bottom Vent,
and also has lower
maximum velocity.

LT Muffle CFD Model – Results Overview

- 1. Flow disturbance is only significant within 1 meter of the vent position, regardless if vents draw from sides only or across the entire bottom.
- 2. Side vents show maximum gas velocity at the tow line of 2 m/sec that is 4X higher than either type of bottom vent.
- 3. Restrictive bottom vents introduce significant swirl into flow that could trap and entangle tows. This swirl is not evident in side or non-restrictive bottom vents.

Thank you for your time!

Visit us at harperintl.com and harperbeacon.com

