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Carbon Fiber Process Overview
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Carbon Fiber Thermal Conversion Process
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Example Carbonization Line
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Carbon Line Optimization and Growth Challenges~

OVENS

= Efficiency - Floor Space
* 100% of heated length at temperature

= Efficiency — Energy Consumption

= Prevent cold air infiltration

= Safety - Prevent escape of oven gas

= Eliminate HCN in working areas




Oven End Seals — Modeling Objectives

= Predict temperature uniformity
= Predict escape of oven gas

= Predict cold air infiltration

... While Varying Oven Width, Height, and # Passes




Focus on End Seals - Features in CFD Model

Exhaust flow rate

. Slot opening height (inside and outside)

Number of divider plates

Exhaust damper position
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CFD Results Summary:
Oxidation Oven End Seals

Total mass flow
=570 kg/hr
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Oven Atmosphere Sealing - Field Data

Total oven gas escape

= 830 kg/hr
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Total cold air infiltration

= 1220 kg/hr
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Velocity and Temperature - Affect of Slot Height

Outer Slot
Openings All
50mm

Inner Slot Separator
Openings All Plate
50 mm |




Velocity and Temperature - Affect of Slot Height

Outer Slot
Openings All
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Oven CFD Model — Results Overview

1. The chimney affect is influenced by the towband
and by the presence of divider plates.

Slot opening heights have a major impact on the
performance of the ovens, especially with respect

to cold air infiltration.




Example Carbonization Line
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Carbon Line Optimization and Growth Challenges

FURNACES

= Efficiency — Floor Space
= 100% Uniformity of Product Across Width

=Efficiency - Improve utilization

* Prevent tow damage
= Prevent fiber material clogging of vents




LT Muffle Furnace- Design Objectives

= Uniform gas flow & temperature across furnace
= Vent process gas, for PAN precursor ~30% of the mass

= Prevent plugging (that can interrupt production)




LT Muffle Furnace Features in CFD Model

Exhaust flow rate

Furnace width

Vent positions - sides or bottom of muffle

Vent geometry - restrictive bottom vs. open

bottom




Side Vents —

* No Opening
Across Bottom

* At Muffle
Mid-Height

Vent Geometries

Bottom Vents —

e Below muffle

* Open Across Entire Width

Restrictive Type

Non-Restrictive Type




Model Geometries & Symmetries

= Model is based on 3m wide furnace

= Uniform flow of nitrogen across width, totaling 200 kg/hr

Plane of
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Symmetry

Symmetry




Side Vent Velocity

Maximum velocity near vent at tow
line ~ 2.0 m/sec




Side Vent

Flow Distribution Across Width Plane of
Symmetry




Side Vent Streamlines




Bottom Vent, Restrictive Type - Velocity

Maximum velocity near vent at
tow line ~ 0.44 m/sec




Bottom Vent, Restrictive Type

Flow Distribution Across Width Plane of

Symmetry
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Bottom Vent Results — Restrictive Vent - Streamlines

4 m/sec

= The Restrictive Bottom
Vent provides a more
even draw across the
muffle.

The restriction creates a
swirl pattern in the
vent.
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Bottom Vent, Non Restrictive Type - Velocity

Maximum velocity near vent at
tow line ~ 0.48 m/sec




Bottom Vent, Non Restrictive Type

Flow Distribution Across Width Plane of

Symmetry
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Bottom Vent, Non Restrictive Type - Streamlines

| 2 m/sec
The Non-Restrictive ‘
Bottom Vent creates less
swirl compared to the
Restrictive Bottom Vent,
and also has lower
maximum velocity.




LT Muffle CFD Model — Results Overview

Flow disturbance is only significant within 1 meter
of the vent position, regardless if vents draw from
sides only or across the entire bottom.

Side vents show maximum gas velocity at the tow

line of 2 m/sec that is 4X higher than either type of
bottom vent.

Restrictive bottom vents introduce significant swirl
into flow that could trap and entangle tows. This
swirl is not evident in side or non-restrictive
bottom vents.




Thank you for your time!
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