

MS&T 2013

Modeling very high temperature, dense cloud, free-fall heating for particles with wide particle size distributions

Dr. Peter Witting, Bruce Dover

Outline

- Rationale
- Theory
 - The Force Balance
 - Collision Counting
 - Thermal Model
 - Radiation
 - Gray bodies
 - Convective Heat Transfer:
- Examples
- "Harper equipment examples" and questions
- Any questions slides / will be around all day....

Rationale

- Harper manufactures vertical free-fall reactors
 - Broad range of
 - Temperatures
 - Materials
 - Sizes
 - of furnaces
 - of particles
 - High T = High CAPEX
 - Need good modeling of unexplored parameter sets for appropriate estimation of system

The Particle Force Balance

- The Force Balance:
 - Gas properties change substantially and with temperature
 - The particle's momentum is substantial (dense, large, etc.)
 - Acceleration is accounted for
- Drag Coefficient
 - The drag force on the particle is
 - $F_D = C_D A_P \rho v^2 / 2$
 - A_p is the particle's projected area
 - C_D is a function of the particle's Reynolds number
 - Re = ρ v D / μ
 - μ is the viscosity, a temperature dependent property
 - Temperature may change by 1 order of magnitude
 - Gas mixtures: use mixing rule

$$\mu_{\text{mixture}} = \sum (y_i \mu_i / \sum y_j \Phi_{ij})$$

$$\Phi_{ij, \mu} = 8^{-\frac{1}{2}} (1 + M_i / M_j)^{-\frac{1}{2}} (1 + (\mu_i / \mu_j)^{\frac{1}{2}} / (M_i / M_j)^{-\frac{1}{4}}))^2$$

The Particle Force Balance

- Drag Coefficient
 - The drag force on the particle is
 - $F_D = C_D A_P \rho v^2 / 2$
 - C_D is a function of the particle's Reynolds number
 - For spherical particles... Ψ = 1
 - For non-spherical particles
 - Sphericity, Ψ = $A_{particle}$ / $A_{sphere, same\ volume}$
 - $\Psi_{\text{tetrahedron}} = 0.671$
 - $C_D = 24/\text{Re} \left(1 + 8.1716 \, \text{e}^{-4.0655\Psi} \, \text{Re}^{0.0964 + 0.5565\Psi} \right) + 73.69 \, \text{e}^{-5.0748\Psi} \, \text{Re} / \left(\text{Re} + 5.378 \, \text{e}^{6.2122\Psi} \right)$

The Force Balance

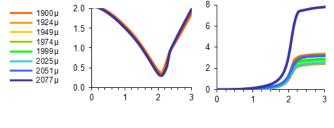
- The Force Balance:
 - The particle's momentum is substantial (dense, large, etc.)
 - Acceleration must be accounted for
 - Particle acceleration
 - $a_i = (F_{Di} + (\pi(\rho_i \rho_{gas})D_i^3/6)g)/(\pi\rho_i D_i^3/6).$
 - velocity is $v_i(y+\Delta y) = v_i(y) + a_i\Delta t$
 - Substitute $\Delta t = \Delta y/v_i$
 - unstable for v_i approaching zero
 - however, $v_i = 0$ is a plugged reactor

Collision Counting

- Collisions: because different size particle have different speeds
 - Interesting if sticky particles
 - non-sticky particles: collisions not so important
 - non-sticky don't NEED free-fall

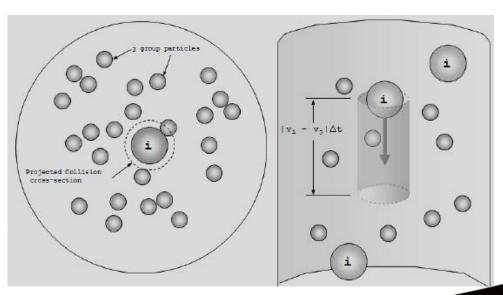
- Break Particle Size Distribution (PSD) into discrete slices
- Define volumetric number density for each ...
 - Particle size (range, η_i)
 - At all points along length
- Define Collisions / Volume
- Count collisions
 - Along length
 - Above cut-off temperature

$$\begin{split} \eta_j &= \Delta t \; m \; X_j \; / \; (\Delta t \; v_j \; \pi/4 \; D_t{}^2) = N_j \; / \; (v_j \; \pi/4 \; D_t{}^2) \\ N_j &= \left(m \; X_j \; / \; (\pi \rho_j D_j{}^3/6) \right) \end{split}$$



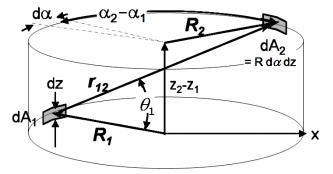
velocity vs distance

cummulative N_{C,i}



Thermal Model: Radiation

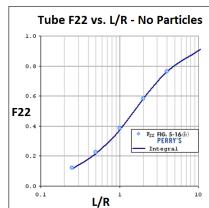
- Thermal Model: Radiation
 - View Factors
 - of tube to self
 - of tube to particles
 - of particles to particles
 - of one size group to another



 $dA_1 \cos(\theta_1) dA_2 \cos(\theta_2)/\pi \mathbf{r}_{12}^2$

- Volumetric density of particle projected area

 - has units of L⁻¹
 - $A_{\text{tube}} F_{\text{tube, tube}} = \text{integral over volume element } \pi R_1^2 \Delta y$
 - of $\exp(-\beta |r_{12}|)(|r_{12} \cdot R_1|/|r_{12}||R_1|)^2 (1/\pi r_{12}^2) R_t d\alpha_1 dz_1 R_t d\alpha_2 dz_2$
- Monte Carlo method to view factor calculations
 - Comparison to published curve



Thermal Model: Radiation

• View of Tube to Tube (through cloud) vs. β

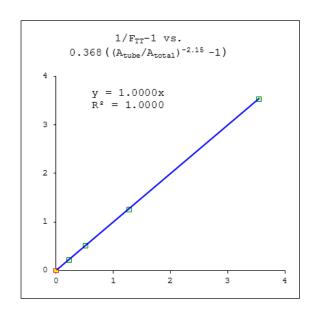
$$- A_{tube}/A_{total} = \pi D_t dy/(\pi D_t dy + \pi/4 D_t^2 dy \times 4\beta)$$

= 1/(1 + \beta D_t)

- View of Tube to Particles:
 - PSD is broken into 8 groups
 - Without radial separation, $F_{tr} dA_2 = \beta r dr d\alpha dz$
 - Distribution across PSD:
 - i=1 is tube, 1<i<10 is particles
- View of Particles to Particles

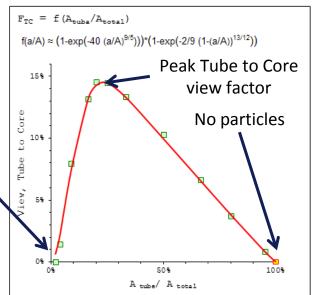
$$- A_t F_{ti} = A_t F_{tp} A_i / \sum_{j \neq 1} A_j$$

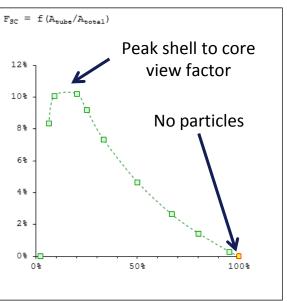
$$\begin{aligned} F_{pt} &= F_{tp} \ A_t / \Sigma_{j \neq 1} A_j \\ A_i \ F_{it} &= A_t F_{Ti} = A_t F_{tp} \ A_i / \Sigma_{j \neq 1} A_j \\ F_{pp} &= 1 - F_{pt}, \\ A_i \ F_{ij} &= A_i F_{pp} \ A_j / \Sigma_{k \neq 1} \ A_k \end{aligned}$$



Thermal Model: Radiation

- View of Tube to Particles:
 - Radial gradient: $dA_2 = \beta r dr d\alpha dz$
 - separate powder into shell and core (equal volumes)
 - Calculate, F_{tc} and F_{cs} and generate the rest
 - $F_{sc}=A_cF_{cs}/A_s$, $F_{cc}=1-(F_{ct}+F_{cs})$, etc.
 - No radial gradient in volumetric loading of powder
 - i=1 is tube, i= 2 to 5 is shell, i= 6 to 9 is core
 - $= \quad |F(i=1, |F(j=1, F_{tt'}, |F(j<6, F_{st'}, F_{ct'})), |F(j=1, |F(i<6, F_{ts'}, F_{tc'}), |F(j<6, |F(i<6, F_{ss'}, F_{sc'}), |F(i<6, F_{cs'}, F_{cc'}))))| \\$





Tube view to core obstructed by dense cloud of particles in shell

Core

Shell

Grey Bodies

- Grey: emissivity, ε, less than 1 and not a function of wavelength
 - Some radiation is absorbed, some reflects
 - Radiosity Vector (effective temperature)
 - $\{W_i, i=1, 2, ..N\} = \{N \times N\}^{-1} \{f(A_i, \varepsilon_i, T_i)\}^T$
 - Radiation transfer to an i particle = $\sigma \pi D_i^2 \epsilon_i / (1 \epsilon_i)$ (W_i T_i⁴)
 - Inverting a Matrix in each step of an explicit integration

•
$$W_i = ((A_i^T AF_{ij} - \delta_{ij} A_i/(1-\epsilon_i))^{-1} \times (-A_i^* (\epsilon_i/(1-\epsilon_i)) * T_i^4)^T)^T$$

•
$$AF_{ij} = if(i=1, 1, A_i/(\Sigma A_i - \pi D_{tube} \Delta y)) * F_{ij}$$

•
$$F_{ij} = if(i=1, if(j=1, F_{tt}, F_{tp}), if(j=1, F_{pt}, F_{pp}))$$

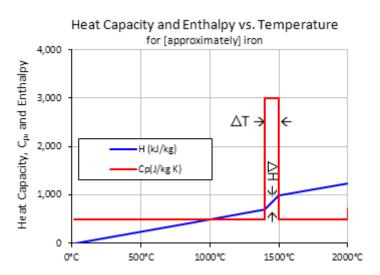
Convective Heat Transfer

- Convective Heat Transfer:
 - Transfer Coefficient, h
 - $Nu_i = 2 + 0.6Re_i^{1/2} Pr^{1/3}$
 - $h_i = Nu_i k_i / D_i$
 - k (gas thermal conductivity) has a subscript because the film temperature is used for gas transport properties
 - The model has logic that deals separately with
 - Upward flowing gas
 - Downward flowing gas
 - No net gas flow
 - Gas temperature calculation
 - For flowing gas, $T(y\pm\Delta y)$ is integrated along each Δy
 - For non-flowing gas, $T_g = \Sigma_i (h_i A_i T_i) / \Sigma_i (h_i A_i)$

Particle Temperature

Explicit Integration:

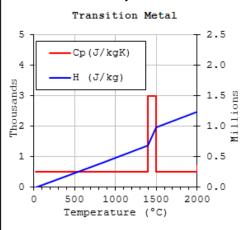
- $T(t+\Delta t) = T(t) + \Sigma q/mC_p$
 - Σ q is the sum of the radiation and convection heats
 - m, the particle mass, is $\pi D^3 \rho/6$
 - C_p is the heat capacity, $C_p = dH/dT$
 - Phase changes can be modeled
 - Melting iron over 100C° range

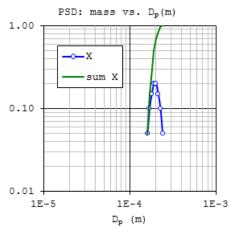


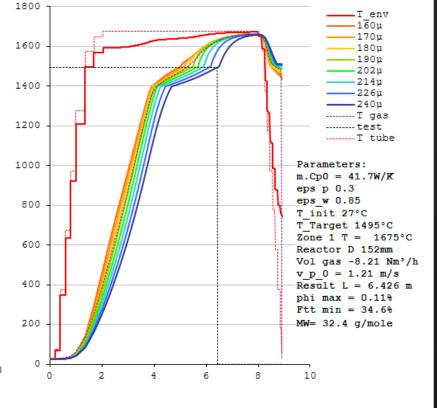
Results/Examples

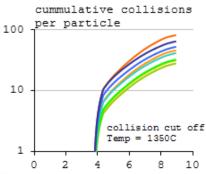
How to read the output

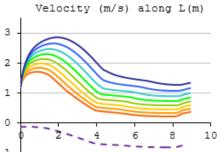
- Temperature vs. Length, legend, parameter list
- C_p and Enthalpy vs. Temperature
- Particle Size Distribution
- Collisions per particle (for each size) along length
- Velocity for each size along length





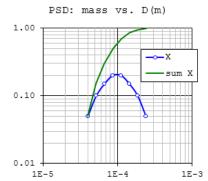


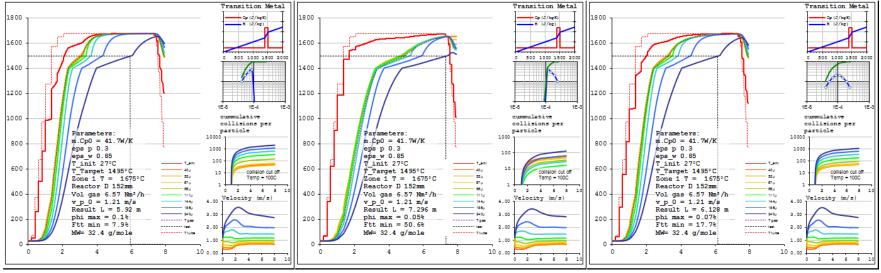




Results/Examples

- Two "narrow" particle distributions vs. combined
 - Starting PSD has a D₅₀ of 100m
 - Fine cut (below 100μ), Coarse cut (above 100μ)
 - Target: melt 300kg/h iron ($C_p = 500J/kgK$, $\Delta H = 250kJ/kg$ over 100C°)

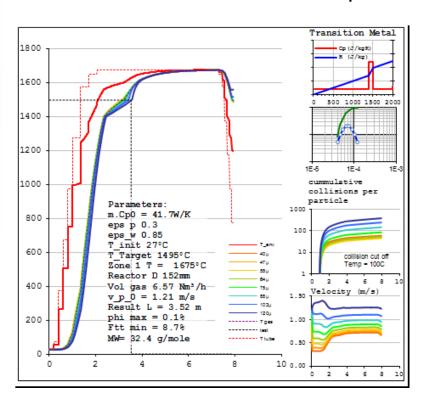


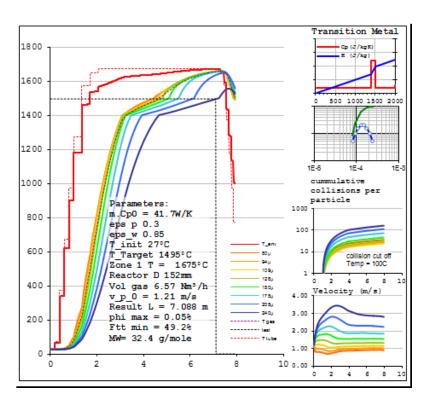


- On the left, fine cut (ignore the big particles) 300kg melts in 3.5m
- Central figure, coarse cut, requires 7.3m
- On the right the full 40-240μ PSD requires 6.1m
 - Smaller particles help to heat the larger particles

Results

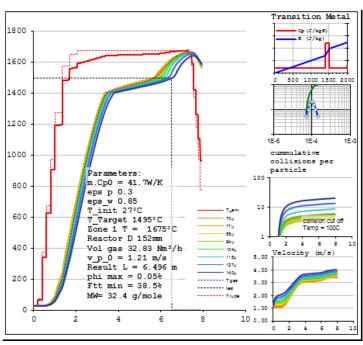
- Results/Examples: 6 slides
 - Alternates of "narrow" particle distributions

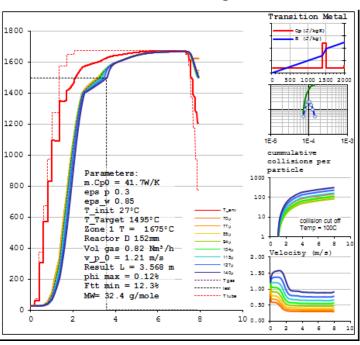




Results

- Results/Examples: 6 slides
 - Effect of co-flowing gas to reduce collisions
 - 10 fold decrease in collisions and 2 fold increase in length





Possible Extensions to the Work

- Radial Gradients in powder
 - Distribution over cross section
 - New view factor calculations
 - More annular cuts
- Axial radiation
 - Much larger matrices to invert
 - May need to reformulate program
- Collisions →
 - Agglomeration (above cut-off)
 - Acceleration

Vertical Systems

- Multiple Tubes Available
 - Alloy, Graphite
 - Quartz, Alumina
 - Monolithic, multi-segment
- Multi-Tube Reactors
 - Think "heat exchanger"

1.25m long, 1 zone 100-150mm ID "tube" 1400°C 2-phase flow Multiple tubes

4.5m long, 3 zone 250mm ID, graphite tube 2200°C, water cooled

Any Questions?

