

How Will Carbon Fiber Manufacturing Quadruple To Meet Market Demands

Presenter: Dr. Peter Witting

Sr. Process Technology Engineer

Harper International

Presented at: Carbon Fiber 2016

Introduction

Challenge: Carbon fiber applications for ground transportation exert market pressure towards increased capacity and lower cost.

How can our industry meet the demand?

Agenda

- About Harper
- Automotive Materials Usage
- Current Carbon Fiber Production Lines
- 10,000 Tons Per Year Carbon Fiber Lines
 - Space Requirements
 - Energy Consumption
 - Technical Challenges

About Harper

- Headquartered near Buffalo, NY
- An employee-owned company
- Onsite Technology Center
- Multi-disciplined engineering talent
 - Chemical
 - Ceramic
 - Mechanical
 - Electrical
 - Industrial
 - Process & Integration

Carbon Fiber Carbonization Process – Scales of Operation

	Scale	Size Range (Tow-Band Width)	Capacity
6	Commercial Production Line	1000 – 4200 mm	500 - 4000 ton/year
	Pilot Line	300 -1000 mm	20 - 100 ton/year
2	Microline	≤100 mm	Less than 10 ton/year
	Scientific Line	Fractional tows (<1k or less than 1,000 filaments)	Less than 1 ton/year

Courtesy of Oak Ridge National Laboratory

Courtesy of Georgia Institute of Technology

Carbon Fiber Carbonization Process – Scales of Operation

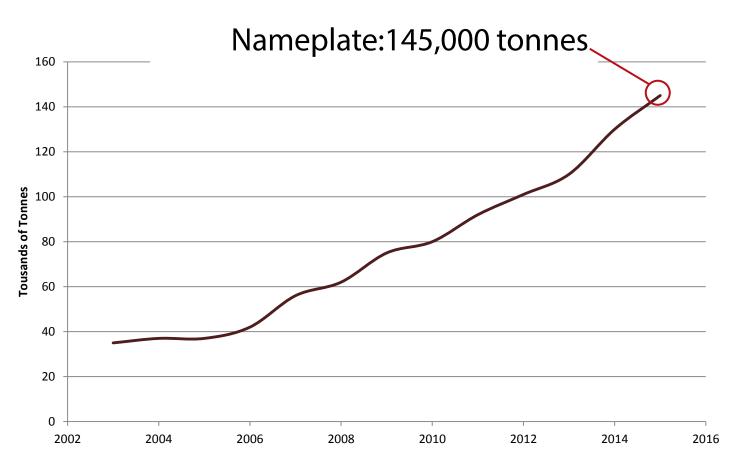
	Scale	Size Range (Tow-Band Width)	Capacity
(Commercial Production Line	1000 – 4200 mm	500 - 4000 ton/year
	Pilot Line	300 -1000 mm	20 - 100 ton/year
+	Microline	≤100 mm	Less than 10 ton/year
	Scientific Line	Fractional tows (<1k or less than 1,000 filaments)	Less than 1 ton/year

Courtesy of Oak Ridge National Laboratory

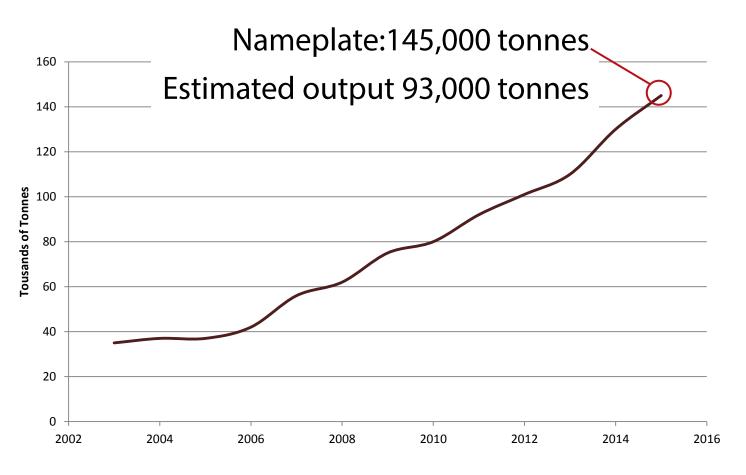
Courtesy of Georgia Institute of Technology

*Georgia tech has produced the highest tensile strength PAN based carbon fiber ever reported, and highest combination of strength and modulus ever reported, on their Harper Scientific Line.

http://www.news.gatech.edu/2015/07/22/innovative-method-improves-strength-and-moduluscarbon-fibers

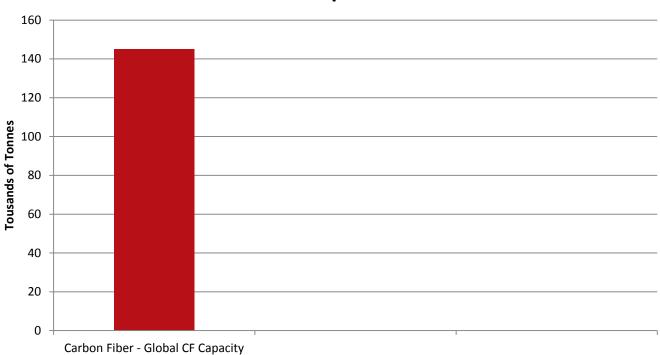

Agenda

- About Harper
- Automotive Materials Usage
- Current Carbon Fiber Production Lines
- 10,000 Tons Per Year Carbon Fiber Lines
 - Space Requirements
 - Energy Consumption
 - Technical Challenges


Historical PAN-based Carbon Fiber Supply

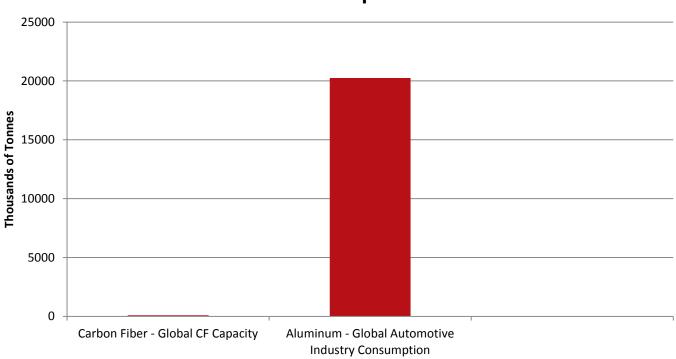
Source: 2015 Global Markets for Carbon Fiber Composites, Chris Red, Composites Forecasting and Consulting LLC

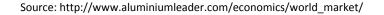
Historical PAN-based Carbon Fiber Supply



Source: 2015 Global Markets for Carbon Fiber Composites, Chris Red, Composites Forecasting and Consulting LLC

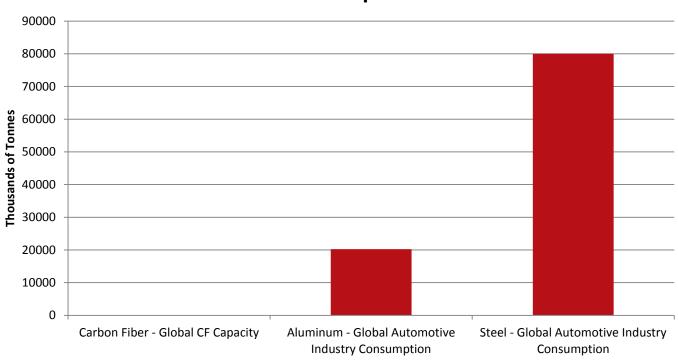
Global Carbon Fiber Capacity vs Automotive Material Demand

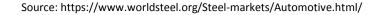

Material Comparisons



Global Carbon Fiber Capacity vs Automotive Material Demand

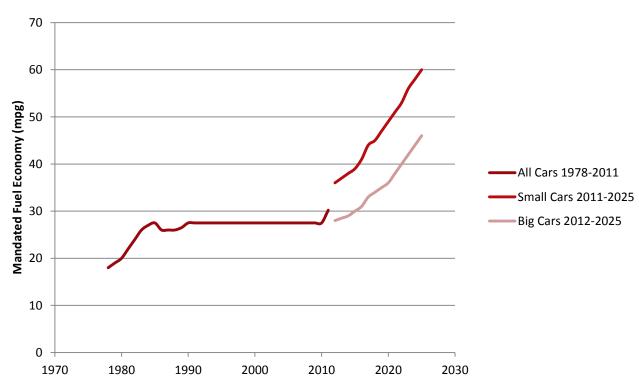
Material Comparisons





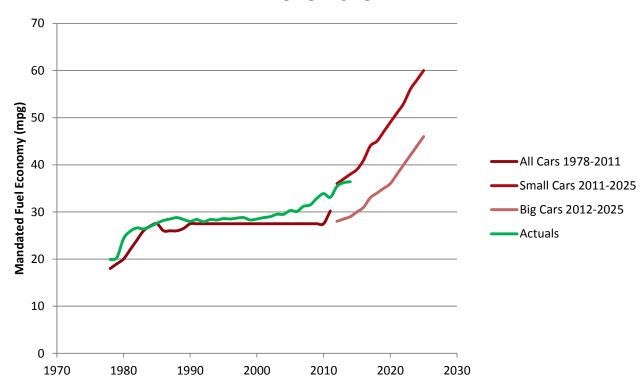
Global Carbon Fiber Capacity vs Automotive Material Demand

Material Comparisons



The Drive For Efficiency

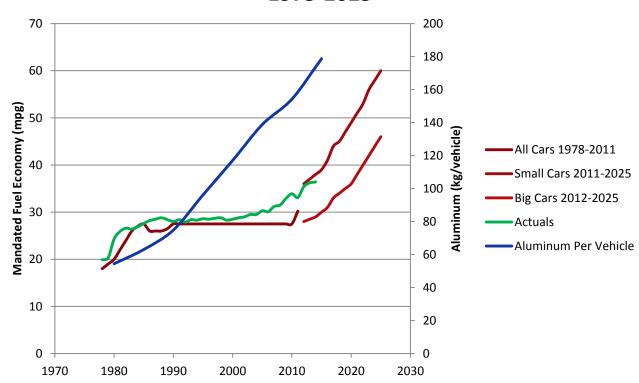
USA Corporate Average Fuel Economy Mandates 1975-2025

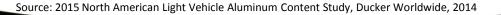


Source: National Highway Traffic Safety Administration, http://www.nhtsa.gov/fuel-economy

The Drive For Efficiency

USA Corporate Average Fuel Economy Mandates 1975-2025




Source: National Highway Traffic Safety Administration, http://www.nhtsa.gov/fuel-economy

The Drive For Efficiency

USA Corporate Average Fuel Economy Mandates 1975-2025

Every roof and hood – CFRP

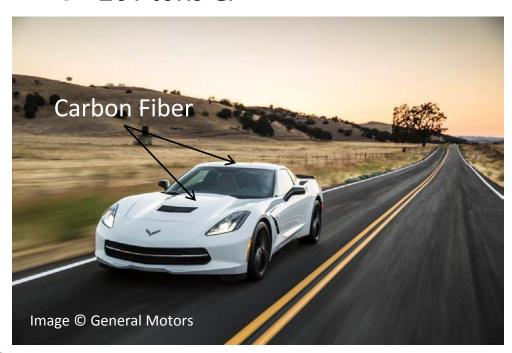
Every roof and hood – CFRP

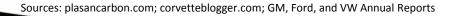
→ 8.2kg CF per Coupe

Every roof and hood – CFRP

→ 8.2kg CF per Coupe

37,288 Vehicles (71% Coupes)

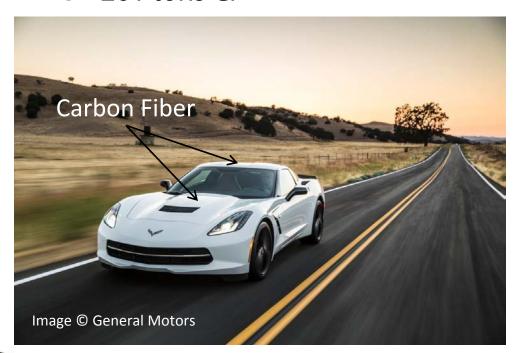



Every roof and hood – CFRP

→ 8.2kg CF per Coupe

37,288 Vehicles (71% Coupes)

 \rightarrow ~261 tons CF


Every roof and hood – CFRP

→ 8.2kg CF per Coupe

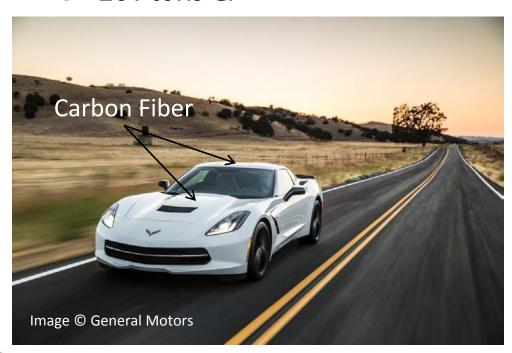
What If

37,288 Vehicles (71% Coupes)

 \rightarrow ~261 tons CF

Every roof and hood – CFRP

→ 8.2kg CF per Coupe

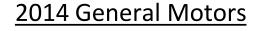

What If

2014 General Motors

6.03 Million Vehicles

37,288 Vehicles (71% Coupes)

 \rightarrow ~261 tons CF


Every roof and hood – CFRP

→ 8.2kg CF per Coupe

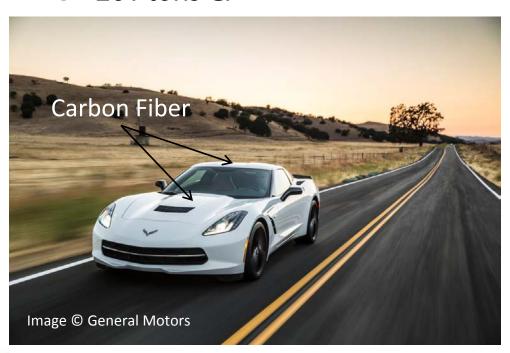
What If

37,288 Vehicles (71% Coupes)

 \rightarrow ~261 tons CF

6.03 Million Vehicles

→49,000 Tons CF


Every roof and hood – CFRP

→ 8.2kg CF per Coupe

What If

37,288 Vehicles (71% Coupes)

 \rightarrow ~261 tons CF

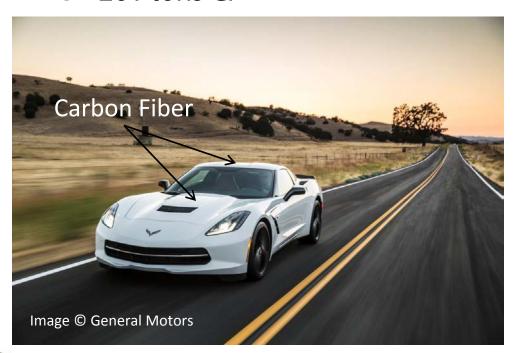
2014 General Motors

6.03 Million Vehicles

→49,000 Tons CF

2014 Ford

6.3 Million Vehicles


Every roof and hood – CFRP

→ 8.2kg CF per Coupe

What If

37,288 Vehicles (71% Coupes)

 \rightarrow ~261 tons CF

2014 General Motors

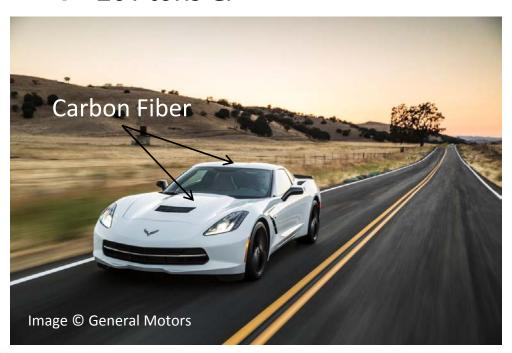
6.03 Million Vehicles

→49,000 Tons CF

2014 Ford

6.3 Million Vehicles

→51,000 Tons CF


Every roof and hood – CFRP

→ 8.2kg CF per Coupe

What If

37,288 Vehicles (71% Coupes)

 \rightarrow ~261 tons CF

2014 General Motors

6.03 Million Vehicles

→49,000 Tons CF

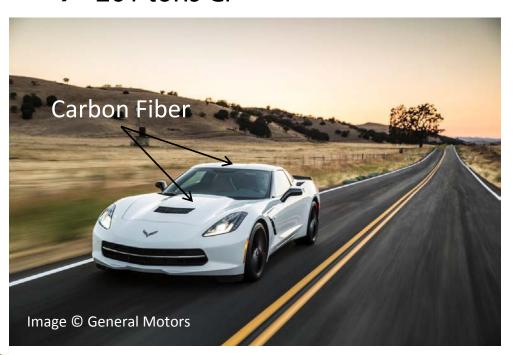
2014 Ford

6.3 Million Vehicles

→51,000 Tons CF

2014 Volkswagen AG

10.1 Million Vehicles


Every roof and hood – CFRP

→ 8.2kg CF per Coupe

What If

37,288 Vehicles (71% Coupes)

 \rightarrow ~261 tons CF

2014 General Motors

6.03 Million Vehicles

→49,000 Tons CF

2014 Ford

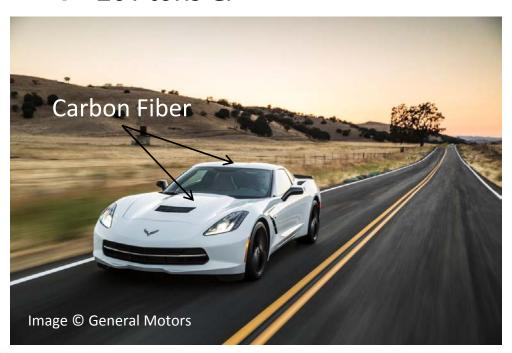
6.3 Million Vehicles

→51,000 Tons CF

2014 Volkswagen AG

10.1 Million Vehicles

→82,000 Tons CF


Every roof and hood – CFRP

→ 8.2kg CF per Coupe

What If

37,288 Vehicles (71% Coupes)

 \rightarrow ~261 tons CF

2014 General Motors

6.03 Million Vehicles

→49,000 Tons CF

2014 Ford

6.3 Million Vehicles

→51,000 Tons CF

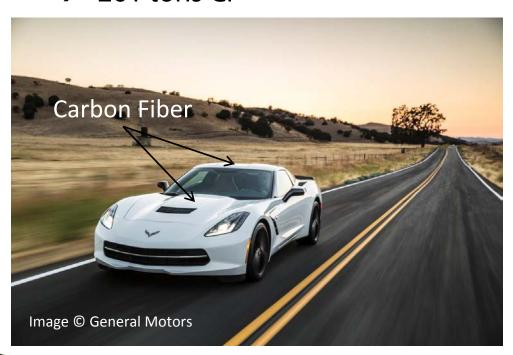
2014 Volkswagen AG

10.1 Million Vehicles

→82,000 Tons CF

2014 Global Industry

87.9 Million Vehicles


Every roof and hood – CFRP

→ 8.2kg CF per Coupe

What If

37,288 Vehicles (71% Coupes)

 \rightarrow ~261 tons CF

2014 General Motors

6.03 Million Vehicles

→49,000 Tons CF

2014 Ford

6.3 Million Vehicles

→51,000 Tons CF

2014 Volkswagen AG

• 10.1 Million Vehicles

→82,000 Tons CF

2014 Global Industry

87.9 Million Vehicles

→718,000 Tons CF

Every roof and hood – CFRP

→ 8.2kg CF per Coupe

What If

37,288 Vehicles (71% Coupes)

 \rightarrow ~261 tons CF

2014 General Motors

6.03 Million Vehicles

→49,000 Tons CF

2014 Ford

6.3 Million Vehicles

→51,000 Tons CF

2014 Volkswagen AG

10.1 Million Vehicles

→82,000 Tons CF

2014 Global Industry

87.9 Million Vehicles

→718,000 Tons CF

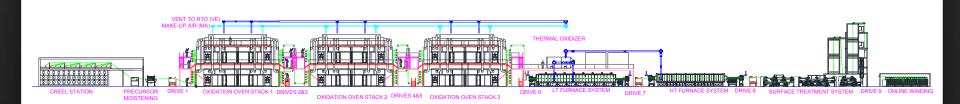
Image © General M

Agenda

- About Harper
- Automotive Materials Usage
- Current Carbon Fiber Production Lines
- 10,000 Tons Per Year Carbon Fiber Lines
 - Space Requirements
 - Energy Consumption
 - Technical Challenges

Carbon Fiber – Current Production Lines

1500 to 2500 Tons Per Year 3 Meter Processing Width

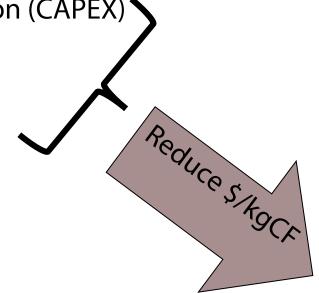


3 Meter Wide Harper Oxidation Oven Section

Current Production Lines – Floor Space Requirements

Up to 300 meters long

20 - 40 meters wide



Production Cost Drivers \$/kg Carbon Fiber

PAN precursor

Depreciation (CAPEX)

- Labor
- Energy

High Capacity Plant Design

Agenda

- About Harper
- Automotive Materials Usage
- Current Carbon Fiber Production Lines
- 10,000 Tons Per Year Carbon Fiber Lines
 - Scale Up Scenarios
 - Technical Challenges
 - Energy Consumption

Carbonization Line Scale Up

Production Rate

$$= (Yield) \times \left(\frac{Mass}{Filament\ Length}\right) \times (Total\ Filaments) \times (Linespeed)$$

Carbonization Line Scale Up

Production Rate

$$= (Yield) \times \left(\frac{Mass}{Filament\ Length}\right) \times (Total\ Filaments) \times (Linespeed)$$

$$Total\ Filaments = \left(\frac{Filaments}{Width}\right) \times (Linewidth)$$

Carbonization Line Scale Up

$$= (Yield) \times \left(\frac{Mass}{Filament\ Length}\right) \times (Total\ Filaments) \times (Linespeed)$$

$$Total\ Filaments = \left(\frac{Filaments}{Width}\right) \times (Linewidth)$$

Carbonization Line Scale Up

$$= (Yield) \times \left(\frac{Mass}{Filament\ Length}\right) \times (Total\ Filaments) \times (Linespeed)$$

$$Total\ Filaments = \left(\frac{Filaments}{Width}\right) \times (Linewidth)$$

 Annual capacity is Production Rate times the available hours per year

Paths to 10,000 Tons/Year

	Filaments	Linewidth	Linespeed	
	per mm	m	m/min	Tonnes/year
Baseline	2000	3	10	2000
Scaleup Factor	1.71	1.71	1.71	5
	3420	5.13	17.1	10000
Scaleup Factor	1.25	2.00	2.00	5
	2500	6.00	20.0	10000
Scaleup Factor	1.75	2.00	1.43	5
	3500	6.00	14.3	10000
Scaleup Factor	4.50	1.00	1.11	5
	9000*	3.00	10.5	10000

^{*} Source: ORNL Low-Cost Carbon Fiber Process – April, 2016

Paths to 10,000 Tons/Year

	Filaments	Linewidth	Linespeed	
	per mm	m	m/min	Tonnes/year
Baseline	2000	3	10	2000
Scaleup Factor	1.71	1.71	1.71	5
	3420	5.13	17.1	10000
Scaleup Factor	1.25	2.00	2.00	5
	2500	6.00	20.0	10000
Scaleup Factor	1.75	2.00	1.43	5
	3500	6.00	14.3	10000
Scaleup Factor	4.50	1.00	1.11	5
	9000*	3.00	10.5	10000

Not likely to be "one size fits all"

^{*} Source: ORNL Low-Cost Carbon Fiber Process – April, 2016

Paths to 10,000 Tons/Year

	Filaments per mm	Linewidth m	Linespeed m/min	Tonnes/year
	per min		,	10111129, year
Baseline	2000	3	10	2000
Scaleup Factor	1.71	1.71	1.71	5
	3420	5.13	17.1	10000
Scaleup Factor	1.25	2.00	2.00	5
	2500	6.00	20.0	10000
Scaleup Factor	1.75	2.00	1.43	5
	3500	6.00	14.3	10000
Scaleup Factor	4.50	1.00	1.11	5
	9000*	3.00	10.5	10000

- Not likely to be "one size fits all"
- This represents scalable technology

^{*} Source: ORNL Low-Cost Carbon Fiber Process – April, 2016

Today

2,000 TPY

3 meters wide

10 m/min

2,500 filaments/mm

Tomorrow

10,000 TPY

5 or 6 meters wide

20 m/min

5,000 filaments/mm

Today	Tomorrow
2,000 TPY	10,000 TPY
3 meters wide	5 or 6 meters wide
10 m/min	20 m/min
2,500 filaments/mm	5,000 filaments/mm

Today	Tomorrow
2,000 TPY	10,000 TPY
3 meters wide	5 or 6 meters wide
10 m/min	20 m/min
2,500 filaments/mm	5,000 filaments/mm

Wider lines

Thermal and velocity uniformity across the width

Today	Tomorrow
2,000 TPY	10,000 TPY
3 meters wide	5 or 6 meters wide
10 m/min	20 m/min
2,500 filaments/mm	5,000 filaments/mm

- Thermal and velocity uniformity across the width
- High mass resident in the ovens

Today	Tomorrow
2,000 TPY	10,000 TPY
3 meters wide	5 or 6 meters wide
10 m/min	20 m/min
2,500 filaments/mm	5,000 filaments/mm

- Thermal and velocity uniformity across the width
- High mass resident in the ovens
- Process off-gas extraction (pipes plugging; loss of width-wise uniformity)

Today	Tomorrow
2,000 TPY	10,000 TPY
3 meters wide	5 or 6 meters wide
10 m/min	20 m/min
2,500 filaments/mm	5,000 filaments/mm

- Thermal and velocity uniformity across the width
- High mass resident in the ovens
- Process off-gas extraction (pipes plugging; loss of width-wise uniformity)
- Higher tow counts (longer re-creeling times)

	Today		Tomorrow
	2,000 TPY		10,000 TPY
_	3 meters wide		5 or 6 meters wide
	10 m/min		20 m/min
	2,500 filaments/mm		5,000 filaments/mm

- Thermal and velocity uniformity across the width
- High mass resident in the ovens
- Process off-gas extraction (pipes plugging; loss of width-wise uniformity)
- Higher tow counts (longer re-creeling times)
- Access platforms

Today	Tomorrow
2,000 TPY	10,000 TPY
3 meters wide	5 or 6 meters wide
10 m/min	20 m/min
2,500 filaments/mm	5,000 filaments/mm

Higher line speeds

Today	Tomorrow
2,000 TPY	10,000 TPY
3 meters wide	5 or 6 meters wide
10 m/min	20 m/min
2,500 filaments/mm	5,000 filaments/mm

- Higher line speeds
 - Longer furnaces (cleaning, catenary)

Today	Tomorrow
2,000 TPY	10,000 TPY
3 meters wide	5 or 6 meters wide
10 m/min	20 m/min
2,500 filaments/mm	5,000 filaments/mm

- Higher line speeds
 - Longer furnaces (cleaning, catenary)
 - Process off-gas extraction (pipes plugging; vent placements)

Today	Tomorrow
2,000 TPY	10,000 TPY
3 meters wide	5 or 6 meters wide
10 m/min	20 m/min
2,500 filaments/mm	5,000 filaments/mm

Higher line speeds

- Longer furnaces (cleaning, catenary)
- Process off-gas extraction (pipes plugging; vent placements)
- Faster developing upsets (broken tow, wrapping)

Today	Tomorrow
2,000 TPY	10,000 TPY
3 meters wide	5 or 6 meters wide
10 m/min	20 m/min
2,500 filaments/mm	5,000 filaments/mm

Higher line speeds

- Longer furnaces (cleaning, catenary)
- Process off-gas extraction (pipes plugging; vent placements)
- Faster developing upsets (broken tow, wrapping)
- More frequent re-creeling or splicing

Today	Tomorrow
2,000 TPY	10,000 TPY
3 meters wide	5 or 6 meters wide
10 m/min	20 m/min
2,500 filaments/mm	5,000 filaments/mm

Higher filaments per width

Today	Tomorrow
2,000 TPY	10,000 TPY
3 meters wide	5 or 6 meters wide
10 m/min	20 m/min
2,500 filaments/mm	5,000 filaments/mm

- Higher filaments per width
 - Potentially increases required residence times

Today	Tomorrow	
2,000 TPY	10,000 TPY	
3 meters wide	5 or 6 meters wide	
10 m/min	20 m/min	
2,500 filaments/mm	5,000 filaments/mm	

- Higher filaments per width
 - Potentially increases required residence times
 - Increased potential for exothermic runaways

Today	Tomorrow
2,000 TPY	10,000 TPY
3 meters wide	5 or 6 meters wide
10 m/min	20 m/min
2,500 filaments/mm	5,000 filaments/mm

- Higher filaments per width
 - Potentially increases required residence times
 - Increased potential for exothermic runaways
 - Drop in fiber mechanical properties

Today	Tomorrow
2,000 TPY	10,000 TPY
3 meters wide	5 or 6 meters wide
10 m/min	20 m/min
2,500 filaments/mm	5,000 filaments/mm

- Higher filaments per width
 - Potentially increases required residence times
 - Increased potential for exothermic runaways
 - Drop in fiber mechanical properties
 - Cosmetic damage

Today
2,000 TPY
3 meters wide
10 m/min
2,500 filaments/mm

Tomorrow
10,000 TPY
5 or 6 meters wide
20 m/min
5,000 filaments/mm

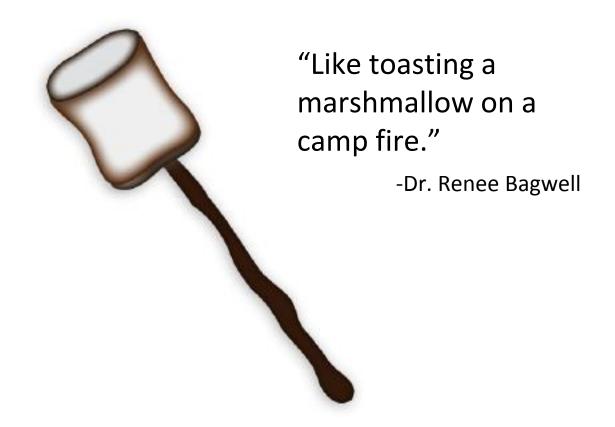
Overall needs...

Today
2,000 TPY
3 meters wide
10 m/min
2,500 filaments/mm

Tomorrow
10,000 TPY
5 or 6 meters wide
20 m/min
5,000 filaments/mm

Overall needs...

→ Greater process stability


Today
2,000 TPY
3 meters wide
10 m/min
2,500 filaments/mm

Tomorrow	
10,000 TPY	
5 or 6 meters wide	
20 m/min	
5,000 filaments/mm	

Overall needs...

- → Greater process stability
- → Equipment thermal precision and reliability

"Like toasting a marshmallow on a camp fire."

-Dr. Renee Bagwell

Achieve uniform thermal processing

"Like toasting a marshmallow on a camp fire."

-Dr. Renee Bagwell

- Achieve uniform thermal processing
- Prevent runaway exotherm

"Like toasting a marshmallow on a camp fire."

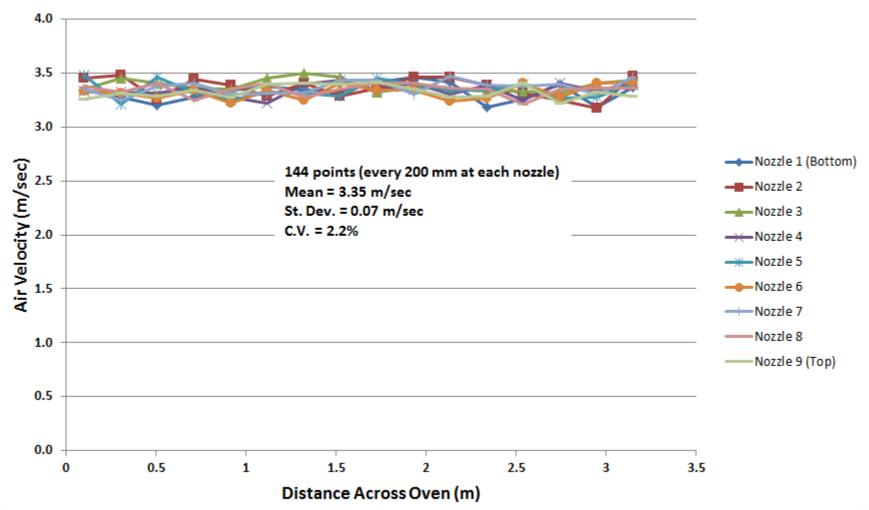
-Dr. Renee Bagwell

- Achieve uniform thermal processing
- Prevent runaway exotherm
- Key: airflow uniformity

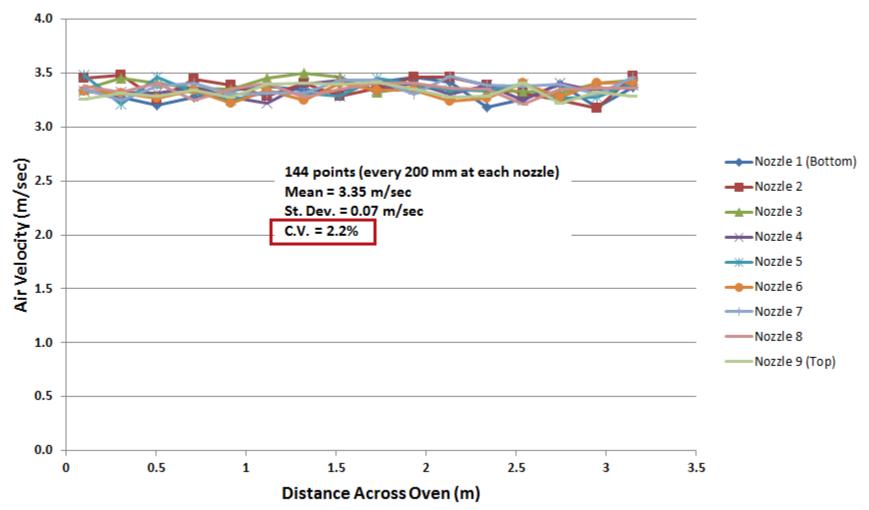
"Like toasting a marshmallow on a camp fire."

-Dr. Renee Bagwell

- Achieve uniform thermal processing
- Prevent runaway exotherm
- Key: airflow uniformity
 - Straight
 - > Smooth
 - Even


Harper Oxidation Oven – Stable Airflow

Harper Oxidation Oven - Stable Data


Velocity at Center Nozzles of 3 Meter Oven

Harper Oxidation Oven - Stable Data

Velocity at Center Nozzles of 3 Meter Oven

Furnaces - Reliable off-gas extraction

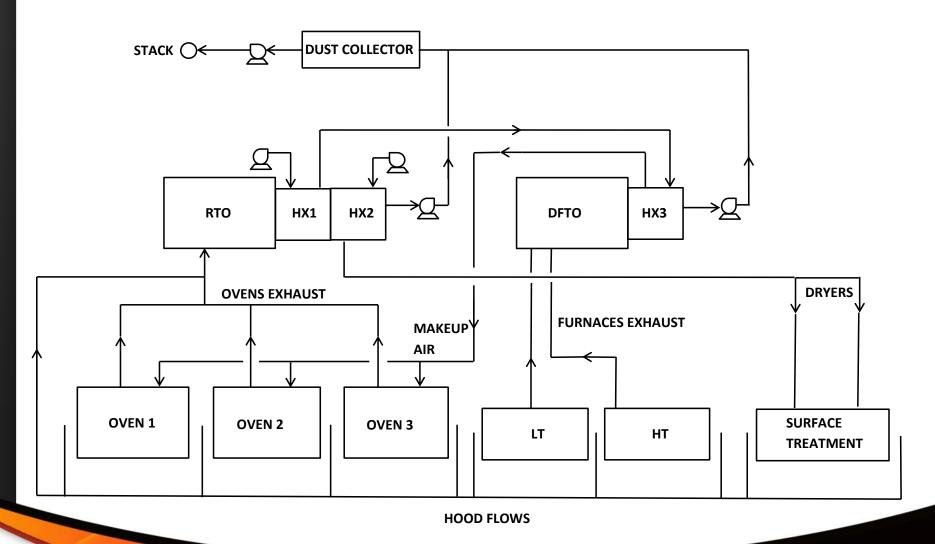
For vent design, Harper has extensive CFD analysis grounded in real-

world experience

Width is Challenging

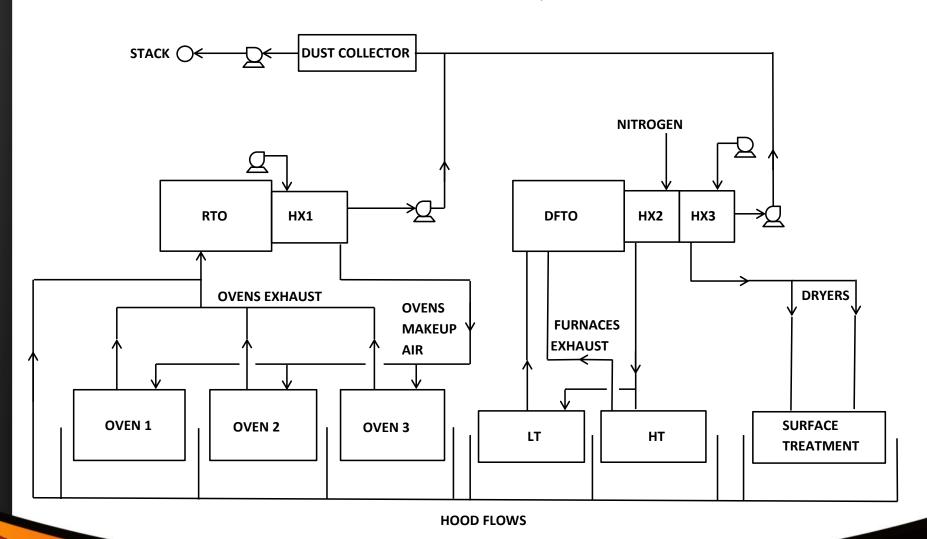
- Multiple Vent Ports?
- Dual Muffles?

Harper LT: ~5.2 meter wide tow system in final assembly, Two (2) muffles 2.6 meter each



High Capacity Plant Cost Savings

10,000 Tonnes Plant Cost Scaleup Factors			
	Five 2000 TPY Lines	One High Capacity Line	
CAPEX / Depreciation	5x	$5^{(0.6 \text{ to } 0.8)} = 2.6 \text{ to } 3.6x$	
Labor	5x	Less than 5x	
Energy	5x	Less than 5x	



Today Achieving Low Energy Consumption Depends on Using Recovered Heat in the Process

Another example of heat recovery – not "one size fits all"

Complexity of interconnected unit operations

- Complexity of interconnected unit operations
- Silica fouling silica removal from heat exchangers

- Complexity of interconnected unit operations
- Silica fouling silica removal from heat exchangers
- Plugging in furnace exhaust piping

- Complexity of interconnected unit operations
- Silica fouling silica removal from heat exchangers
- Plugging in furnace exhaust piping
- Tightening environmental regulations (NOx, Particulate)

- Complexity of interconnected unit operations
- Silica fouling silica removal from heat exchangers
- Plugging in furnace exhaust piping
- Tightening environmental regulations (NOx, Particulate)
- Piping to complex geometry as diameters increase



Example of CF Line Piping

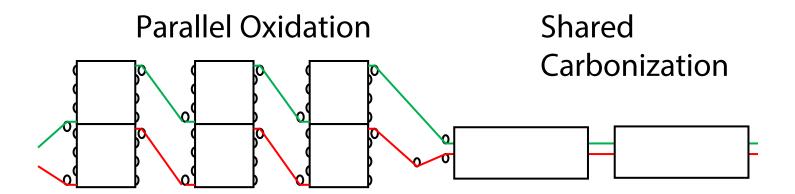
Other energy savings options that will be more important with scaled up capacities:

Other energy savings options that will be more important with scaled up capacities:


Dual tow bands in LT and HT

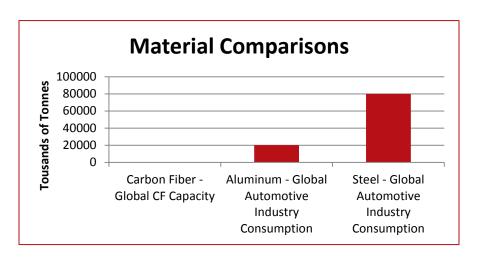
Other energy savings options that will be more important with scaled up capacities:

- Dual tow bands in LT and HT
- Hybrid heating systems use fuel or electric depending on instantaneous costs


Other energy savings options that will be more important with scaled up capacities:

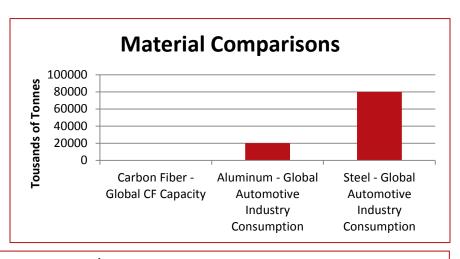
- Dual tow bands in LT and HT
- Hybrid heating systems use fuel or electric depending on instantaneous costs
- Smart electric power systems that can store and retrieve power to reduce costs

Diagram of Dual Tow Bands


Single Plant

- Shared Controls
- Common Utilities
- Common Creels / Winders
- Etc...

Conclusions


Adoption of CFRP as an automotive material will force rethinking of plant configuration.

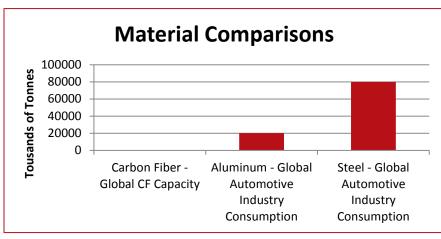
Conclusions

Adoption of CFRP as an automotive material will force rethinking of plant configuration.

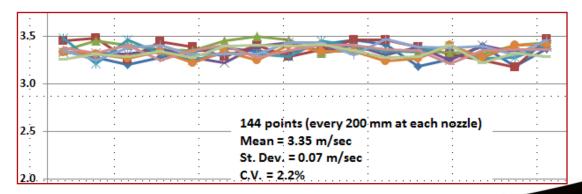
Significant **cost savings** will be realized.

Reduced CAPEX / Depreciation

Reduced Labor


Reduced energy consumption

Conclusions


Adoption of CFRP as an automotive material will force rethinking of plant configuration.

Significant <u>cost savings</u> will be realized.

Reduced CAPEX / Depreciation
Reduced Labor
Reduced \$/kgCF
Reduced energy consumption

Precision and customized equipment will be paramount to success.

Thank You!

Visit us at harperintl.com

