

Moving from Batch to Continuous Production – Challenges & Risk Mitigation for High Temperature Ceramics Processing

Dr. Prasad Apte, Harper International Ceramics Expo, April 2015

Today's Agenda

"Moving from Batch to Continuous Production – Challenges & Risk Mitigation for High Temperature Ceramics Processing"

- About Harper
- Challenges & Risks
- Scale Up Objectives
- Scale Up Success Factors
- Case Study
- Conclusion

About Harper

- Headquartered in Buffalo, NY
- An Employee-Owned Company
- Technology & Piloting Facilities
 - Harper / Buffalo, NY particulate processing
 - Partner Facilities Carbon Fiber line (ORNL),
 UHT Pusher furnace (UDRI)
- Manufacturing Facility
 - Equipment assembly and testing
- Multi-Disciplined Engineering Talent
 - Chemical
 - Ceramic
 - Mechanical
 - Electrical
 - Industrial
 - Process & Integration

About Harper

- -> Established Leader in Thermochemical Processing Systems
- -> Key Partner in Carbon Fiber Scale Up and Manufacturing

Primary Technical Focus:

- New / Challenging / Advanced Material Processing
 - − 200°C − 3000°C
 - Batch and Continuous processing
 - Precise atmospheric controls
 - High purity requirements
 - Complex gas-solid interactions

Challenges in New Material Process & Product Development

Technical Success

- Product quality
- Handling of byproducts and wastes
- Large scale processing
- Continuous operation

Development Costs

- Cost of pilot scale equipment
- Resources for trials
- Analytical costs

Time Required for Development

Objectives in Thermal Processing Scale Up

- ✓ Determine the feasibility under industrial conditions
- ✓ Reduce the development risk and the associated cost
- ✓ Generate data for scale up
- ✓ Develop a safe process that will meet environmental regulations

Scale Up Success - Test Facilities

Proper Sizing of Scale-Up Equipment

- Small enough to enable testing without using large amounts of raw material
- Large enough to provide adequate product for sampling
- Large enough for data generation to be used for commercial scale up
- Large enough to utilize readily available feeders, gas regulators, collection set up

Scale Up Success - Starting Status

Gram scale product

- Batch process
- Generally static operation
- Low gas flows
- Well analyzed product

Data available

- Effect of temperature
- Reaction time for static conditions

Data not available

- Effect of gas flow rate
- Effect of bed depth
- Gas solid contact

Scale Up Success - Desired Final Information

- Defined processing window
- Optimum values for -
 - feed rates
 - residence times
 - gas flow
- Design for -
 - Material feeding systems
 - Product removal systems
- Material entrainment in gas
- Effluents in the exhaust chemistry, quantity

Cascading system with multiple atmospheres

Scale Up Success - Information Generated in the Trials

- Rate limiting reaction kinetics
- Gas solid contact and methods to optimize it
- Techniques for -
 - suppressing entrainment
 - minimizing contamination
 - avoiding condensation/recycling from exhaust gases
 - raw material feeding and product discharge and collection
- Handling of exhaust gases
- Benefits of co-current or countercurrent flow

Scale Up Success -Data Analysis and Equipment Design

Data from laboratory tests will:

- ✓ Define the processing window
- ✓ Help develop process flow diagrams
- ✓ Provide scale up information for commercial production

Follow up engineering analysis:

- ✓ Equipment size scale up
- ✓ Thermal and stress modeling
- ✓ Define feed and product collection systems
- ✓ Determine gas handling systems
- ✓ Determine OPEX and CAPEX

Scale Up Success -Data Analysis and Equipment Design

OPEX Estimation

- ~80-90% of total cost over lifetime
- Process cost models
- Economics of increased production capacity with current and future technologies
- Analysis of best-suited thermal process technology system
- Identification of opportunities for improved product quality and cost reduction

CAPEX Definition

- ~10-20% of total cost over lifetime
- Based on scale-up from trial data collected
- Scale up of processing equipment to meet desired production targets
- Design integration to handle feeding, product handling, gas systems and effluent mgmt
- Prepare a capital cost estimate

Case Study: Molybdenum Production

The Ignite[™] program aims to help the progression of a discovery, an invention or a concept from a small, batch scale to a commercial stage.

- Helping customers turn the next generation of material innovations into profitable new markets
- Utilizes our depth and breadth of experience in thermal processing
- ✓ Reduce Risk
- ✓ Control Cost
- ✓ Parallel Development
- ✓ Controlled Scale-up
- ✓ Successful Commercialization

Stage 1 - Prospecting

Gate I

Estimate Budget: \$ & Time

- Idea GenerationThought Experiments
- ➤ Confirm Thermodynamics
- Confirm Novelty (IP)
- ➤ Why is our idea better?
- ➤ Industry Need
- Potential Customers
- Assuming complete success, what is the potential market?
- > Anyone else doing it?

Technical Activities

Initiate technical trials for POC

Commercial Activities

Best Done by Inventors

Stage 1 - Prospecting

Stage 2 – Initial Testing

Best Done by Inventors

Stage 1 - Prospecting

Stage 2 – Initial Testing

Stage 3 – Applied Research 1

Stage 4 – Applied Research 2

Stage 5 – Trial Manufacturing

Estimate Budget: \$ & Time

- Perform tests at Harper
- Evaluate results
- > Iterate tests as needed
- ➤ Confirm results/vs. objectives
- > Evaluate product quality
- > Design potential scale up
- Obtain input for process improvement from Harper
- > NDA with selected customers
- ➤ Provide samples to customer
- Preliminary price/cost estimates
- Business concept
- ➤ Define final scale up trials and process
- > Identify possible business partners
- Define IP ownership for Harper's process improvement ideas

Technical Activities

Gate IV

Proceed to trial manuf.

Commercial Activities

Estimate Budget: \$ & Time

- Perform trials in equipment similar to commercial
- Product evaluation
- > Iteration to optimize product quality
- Establish a manufacturing plan
- ➤ Define feed→process→product
- Define safety requirements and procedures

Larger scale evaluation at potential customers

- Define pathways to market
- Refined price/cost analysis
- > Preliminary financial analysis
- ➤ Identify source for capital

Commercial Scale Unit

Collaboration with Harper

Thank you for your time!

Visit us at <u>harperintl.com</u>

