

Holistic Design of Thermochemical Processing for Ceramic Production

Charles Miller, Jr., Harper International Ceramics Expo, April 2016

Today's Agenda

"Holistic Design of Thermochemical Processing for Ceramic Production"

- About Harper
- Scale Up Objectives, Challenges & Risks
- Scale Up Success Factors
- Case Study
- Conclusion

About Harper

- -> Established Leader in Thermochemical Processing Systems
- -> Precision High Volume Net Shape Sintering Systems
- -> Key Partner in Carbon & Ceramic Fiber Pilot and Production Plants

Primary Technical Focus:

- New / Challenging / Advanced Material Processing
 - − 300°C − 3000°C
 - Batch and Continuous processing
 - Precise atmospheric controls
 - High purity requirements
 - Complex gas-solid interactions

Challenges in Scale-Up of Emerging Materials

Technical Success

- Product quality
- Transition from 1 \rightarrow 100's kg/hr
- Yield of in-spec. product
- Handling of products and wastes

OPEX Appropriate for return

- Input materials cost
- Labor
- Utility consumption
- CAPEX depreciation

Time for Deployment

Objectives in Thermal Processing Scale-Up

- ✓ Define the "process window"
 - ✓ Stable zone
 - ✓ Push to failure
- ✓ Reduce & Retire risks
- √ Validate data for OPEX model
- ✓ Develop a safe process that will meet environmental regulations
- ✓ Innovate and Optimize
- ✓ Model and validate under industrial conditions

An alignment problem

Challenges in Thermal Processing Scale-Up

- Rate limiting reaction kinetics
- Gas solid contact
- Thermal uniformity within process material vs time
- Techniques for -
 - Suppressing entrainment
 - Minimizing contamination
 - Avoiding condensation/recycling from exhaust gases
 - Raw material feeding and product discharge and collection
- Handling of exhaust gases
- Benefits of co-current or countercurrent flow
- Entrainment

Temp vs time inside carrier and product

Scale Up Success -Data Analysis and Equipment Design

Data from pilot plant designed experiments will:

- ✓ Define the processing window
- ✓ Develop process flow and P&ID diagrams
- ✓ Provide scale up information for commercial production
- ✓ "Production like" materials for product validation

Rigorous Engineering Analysis:

- Equipment size scale up
- ✓ Thermal and stress modeling
- ✓ Determine gas handling systems
- ✓ Define feed and product collection systems
- Determine OPEX and CAPEX

FEA CFD of process gas flow in reactor

Scale Up Success -Data Analysis and Equipment Design

OPEX Estimation

- ~70-90% of total cost over lifetime
- Process cost models
- Economics of increased production capacity with current and future technologies
- Analysis of best-suited thermal process technology system
- Identification of opportunities for improved product quality and cost reduction

CAPEX Definition

- ~10-30% of total cost over lifetime
- Based on scale-up from trial data collected
- Scale up of processing equipment to meet desired production targets
- Design integration to handle feeding, product handling, gas systems and effluent mgmt
- Prepare a capital cost estimate

Challenge Continuous Reactor for fine powders

- Desired 1200 kg/hr scale → Current State Piloted on 10 kg/hr scale
- Micron sized powders, morphology important
- Need high degree of Gas Solid contact in reducing atmosphere
- Highly Exothermic Reaction
 - Alters morphology and causes sticking
- Entrainment <1wt%
- Maintain high purity of product <3ppm

The Ignite[™] program aims to help the progression of a discovery, an invention or a concept from a small, batch scale to a commercial stage.

- Helping customers turn the next generation of material innovations into profitable new markets
- Utilizes our depth and breadth of experience in thermal processing
- ✓ Reduce Risk
 - ✓ Scaling factor 1:10, 1:100, 1:1000
- ✓ Control OPEX
- ✓ Parallel Development
- ✓ Controlled Scale-up
- ✓ Successful Commercialization

Challenge Continuous Reactor for fine powders

- Industrial pilot on 200 kg/hr scale
- Validated Concepts
- Demonstrated
 Automation in 24/7
 production
- Retired Risk
- Confirmed OPEX data to impose on full sale plant model

Solution: Riffle Flight Reactor

Subject to US and International Patents

- ~ 1.2 meter diameter reactor
- ~ 12 meter heated length
- 500 1000 C in H2

- High Degree of mixing
 - Back mixing neutralized exotherm
 - Energy recovery >30%
- Gas Solid contact without entrainment increase

Thank you for your time!

Visit us at <u>harperintl.com</u>

